Magnetic effects in Co3−xO4 defect films from the data of emission Mössbauer spectroscopy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-07

AUTHORS

F. Kh. Chibirova

ABSTRACT

The emission Mössbauer spectra of Co3−xO4 defect films are measured in external magnetic fields at strengths of 0.6–3.5 T. It is shown that the memory effect is observed in the spectra of Co3−xO4 defect films after exposure to an external magnetic field. At temperatures above the Néel temperature TN=26 K, the memory effect manifests itself in an increase in the relative contribution from the spectral line of the tetrahedral A sublattice in the spinel structure of Co3−xO4 crystallites ([Co0.832+]tetr[Co2.203+]octO4 and [Co0.952+]tetr[Co2.103+]octO4 prior to and after the magnetic field treatment, respectively). The isomer shifts δ and the quadrupole splitting ΔE of the spectral lines for both A and B sublattices also change from δA=−0.19 mm/s, δB=−0.31 mm/s, and ΔEB=0.83 mm/s to the values δA=−0.24 mm/s, δB=−0.33 mm/s, and ΔEB=0.60 mm/s, which are close to δ and ΔE for stoichiometric Co3O4 oxide. In the low-temperature spectra (T More... »

PAGES

1291-1298

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1386468

DOI

http://dx.doi.org/10.1134/1.1386468

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016349995


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karpov Institute of Physical Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.70465.30", 
          "name": [
            "State Scientific Center of the Russian Federation, Karpov Research Institute of Physical Chemistry, ul. Vorontsovo pole 10, 103064, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chibirova", 
        "givenName": "F. Kh.", 
        "id": "sg:person.01102233241.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102233241.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1149/1.2129003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043507455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(69)90277-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046593125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(69)90277-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046593125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.42462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061113021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0155.198805a.0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071218111"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-07", 
    "datePublishedReg": "2001-07-01", 
    "description": "The emission M\u00f6ssbauer spectra of Co3\u2212xO4 defect films are measured in external magnetic fields at strengths of 0.6\u20133.5 T. It is shown that the memory effect is observed in the spectra of Co3\u2212xO4 defect films after exposure to an external magnetic field. At temperatures above the N\u00e9el temperature TN=26 K, the memory effect manifests itself in an increase in the relative contribution from the spectral line of the tetrahedral A sublattice in the spinel structure of Co3\u2212xO4 crystallites ([Co0.832+]tetr[Co2.203+]octO4 and [Co0.952+]tetr[Co2.103+]octO4 prior to and after the magnetic field treatment, respectively). The isomer shifts \u03b4 and the quadrupole splitting \u0394E of the spectral lines for both A and B sublattices also change from \u03b4A=\u22120.19 mm/s, \u03b4B=\u22120.31 mm/s, and \u0394EB=0.83 mm/s to the values \u03b4A=\u22120.24 mm/s, \u03b4B=\u22120.33 mm/s, and \u0394EB=0.60 mm/s, which are close to \u03b4 and \u0394E for stoichiometric Co3O4 oxide. In the low-temperature spectra (T
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1386468'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1386468'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1386468'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1386468'


 

This table displays all metadata directly associated to this object as RDF triples.

73 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1386468 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N835a50bb8a2443e999bb4dd94ab6215b
4 schema:citation https://doi.org/10.1016/0022-3697(69)90277-7
5 https://doi.org/10.1109/20.42462
6 https://doi.org/10.1149/1.2129003
7 https://doi.org/10.3367/ufnr.0155.198805a.0003
8 schema:datePublished 2001-07
9 schema:datePublishedReg 2001-07-01
10 schema:description The emission Mössbauer spectra of Co3−xO4 defect films are measured in external magnetic fields at strengths of 0.6–3.5 T. It is shown that the memory effect is observed in the spectra of Co3−xO4 defect films after exposure to an external magnetic field. At temperatures above the Néel temperature TN=26 K, the memory effect manifests itself in an increase in the relative contribution from the spectral line of the tetrahedral A sublattice in the spinel structure of Co3−xO4 crystallites ([Co0.832+]tetr[Co2.203+]octO4 and [Co0.952+]tetr[Co2.103+]octO4 prior to and after the magnetic field treatment, respectively). The isomer shifts δ and the quadrupole splitting ΔE of the spectral lines for both A and B sublattices also change from δA=−0.19 mm/s, δB=−0.31 mm/s, and ΔEB=0.83 mm/s to the values δA=−0.24 mm/s, δB=−0.33 mm/s, and ΔEB=0.60 mm/s, which are close to δ and ΔE for stoichiometric Co3O4 oxide. In the low-temperature spectra (T<TN), the memory effect additionally shows itself as a decrease in the hyperfine magnetic field Hhf of the spectral component for the A sublattice as compared to that in the spectra measured prior to the magnetic field treatment. It is assumed that the concentration of cation vacancies decreases (and, correspondingly, the fraction of reduced Co2+ cations increases) in the Co3−xO4 defect films under the action of an external magnetic field. A possible mechanism of this process is proposed.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N978064e25aed4d0485855e91f84a5c53
15 Nda80eb29343743d18a02e54823f14284
16 sg:journal.1136591
17 schema:name Magnetic effects in Co3−xO4 defect films from the data of emission Mössbauer spectroscopy
18 schema:pagination 1291-1298
19 schema:productId N1aaf2d4477eb40afb657b4a31d01bf3b
20 N8da7be03bd2e49adb597fc6e74374b75
21 Nc5aa5402d79545ff952c3b59451530e0
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016349995
23 https://doi.org/10.1134/1.1386468
24 schema:sdDatePublished 2019-04-10T13:12
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N80655051f8c04e19a98f399da2c13fe7
27 schema:url http://link.springer.com/10.1134/1.1386468
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N1aaf2d4477eb40afb657b4a31d01bf3b schema:name readcube_id
32 schema:value 4de7185197117037f6bfdc509935efddf5e424fd52f89cc4051fb96ec721160d
33 rdf:type schema:PropertyValue
34 N80655051f8c04e19a98f399da2c13fe7 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N835a50bb8a2443e999bb4dd94ab6215b rdf:first sg:person.01102233241.50
37 rdf:rest rdf:nil
38 N8da7be03bd2e49adb597fc6e74374b75 schema:name dimensions_id
39 schema:value pub.1016349995
40 rdf:type schema:PropertyValue
41 N978064e25aed4d0485855e91f84a5c53 schema:issueNumber 7
42 rdf:type schema:PublicationIssue
43 Nc5aa5402d79545ff952c3b59451530e0 schema:name doi
44 schema:value 10.1134/1.1386468
45 rdf:type schema:PropertyValue
46 Nda80eb29343743d18a02e54823f14284 schema:volumeNumber 43
47 rdf:type schema:PublicationVolume
48 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
49 schema:name Engineering
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
52 schema:name Materials Engineering
53 rdf:type schema:DefinedTerm
54 sg:journal.1136591 schema:issn 0367-3294
55 1063-7834
56 schema:name Physics of the Solid State
57 rdf:type schema:Periodical
58 sg:person.01102233241.50 schema:affiliation https://www.grid.ac/institutes/grid.70465.30
59 schema:familyName Chibirova
60 schema:givenName F. Kh.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102233241.50
62 rdf:type schema:Person
63 https://doi.org/10.1016/0022-3697(69)90277-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046593125
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1109/20.42462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061113021
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1149/1.2129003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043507455
68 rdf:type schema:CreativeWork
69 https://doi.org/10.3367/ufnr.0155.198805a.0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071218111
70 rdf:type schema:CreativeWork
71 https://www.grid.ac/institutes/grid.70465.30 schema:alternateName Karpov Institute of Physical Chemistry
72 schema:name State Scientific Center of the Russian Federation, Karpov Research Institute of Physical Chemistry, ul. Vorontsovo pole 10, 103064, Moscow, Russia
73 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...