Calculation of the thermal effect of an electron probe on a sample of GaN View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-05

AUTHORS

L. A. Bakaleinikov, E. V. Galaktionov, V. V. Tret’yakov, É. A. Tropp

ABSTRACT

Stationary temperature fields due to the interaction of an electron probe with a GaN sample are examined. In order to calculate the density of generated heat, the process of electron energy loss is modeled by the Monte Carlo method. The heat generation region is assumed to have the shape of a half-ellipsoid. In the case of uniform heat generation in the ellipsoid, an analytical solution to the heat conduction problem is found and expressed in terms of elementary functions. It is shown that the maximum heating temperature and the temperature field distribution depend only slightly on the shape of the heat generation region. An approximation of the density of heat sources by a uniform distribution over a hemisphere of radius equal to the ultimate range of electrons leads to a considerably underestimated maximum heating temperature. An expression is derived for determining the characteristic size of the heat generation region in GaN; this expression allows one to calculate the maximum heat temperature with an accuracy of 3% in a wide range of electron beam energies. More... »

PAGES

811-817

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1371357

DOI

http://dx.doi.org/10.1134/1.1371357

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042556637


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Classical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakaleinikov", 
        "givenName": "L. A.", 
        "id": "sg:person.07627571270.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07627571270.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galaktionov", 
        "givenName": "E. V.", 
        "id": "sg:person.011734136116.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011734136116.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tret\u2019yakov", 
        "givenName": "V. V.", 
        "id": "sg:person.016037435257.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037435257.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tropp", 
        "givenName": "\u00c9. A.", 
        "id": "sg:person.07573336601.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07573336601.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4613-3273-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002821344", 
          "https://doi.org/10.1007/978-1-4613-3273-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-05", 
    "datePublishedReg": "2001-05-01", 
    "description": "Stationary temperature fields due to the interaction of an electron probe with a GaN sample are examined. In order to calculate the density of generated heat, the process of electron energy loss is modeled by the Monte Carlo method. The heat generation region is assumed to have the shape of a half-ellipsoid. In the case of uniform heat generation in the ellipsoid, an analytical solution to the heat conduction problem is found and expressed in terms of elementary functions. It is shown that the maximum heating temperature and the temperature field distribution depend only slightly on the shape of the heat generation region. An approximation of the density of heat sources by a uniform distribution over a hemisphere of radius equal to the ultimate range of electrons leads to a considerably underestimated maximum heating temperature. An expression is derived for determining the characteristic size of the heat generation region in GaN; this expression allows one to calculate the maximum heat temperature with an accuracy of 3% in a wide range of electron beam energies.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/1.1371357", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "heat generation region", 
      "Monte Carlo method", 
      "stationary temperature field", 
      "heat conduction problem", 
      "generation region", 
      "Carlo method", 
      "elementary functions", 
      "analytical solution", 
      "electron energy loss", 
      "electron beam energy", 
      "hemisphere of radius", 
      "conduction problem", 
      "temperature field distribution", 
      "field distribution", 
      "uniform heat generation", 
      "electron probe", 
      "temperature field", 
      "beam energy", 
      "characteristic size", 
      "GaN samples", 
      "energy loss", 
      "heat generation", 
      "approximation", 
      "maximum heating temperature", 
      "uniform distribution", 
      "GaN", 
      "heat source", 
      "ellipsoids", 
      "thermal effects", 
      "distribution", 
      "wide range", 
      "ultimate range", 
      "electrons", 
      "calculations", 
      "problem", 
      "shape", 
      "solution", 
      "field", 
      "density", 
      "radius", 
      "accuracy", 
      "temperature", 
      "terms", 
      "function", 
      "energy", 
      "range", 
      "order", 
      "heat", 
      "region", 
      "cases", 
      "size", 
      "heat temperature", 
      "generation", 
      "interaction", 
      "process", 
      "probe", 
      "heating temperature", 
      "source", 
      "samples", 
      "expression", 
      "effect", 
      "hemisphere", 
      "loss", 
      "method"
    ], 
    "name": "Calculation of the thermal effect of an electron probe on a sample of GaN", 
    "pagination": "811-817", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042556637"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1371357"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1371357", 
      "https://app.dimensions.ai/details/publication/pub.1042556637"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_319.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/1.1371357"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1371357'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1371357'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1371357'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1371357'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      93 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1371357 schema:about anzsrc-for:02
2 anzsrc-for:0203
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author N05fba9f4b7a54e9f832c5a9531bf2c1f
6 schema:citation sg:pub.10.1007/978-1-4613-3273-2
7 schema:datePublished 2001-05
8 schema:datePublishedReg 2001-05-01
9 schema:description Stationary temperature fields due to the interaction of an electron probe with a GaN sample are examined. In order to calculate the density of generated heat, the process of electron energy loss is modeled by the Monte Carlo method. The heat generation region is assumed to have the shape of a half-ellipsoid. In the case of uniform heat generation in the ellipsoid, an analytical solution to the heat conduction problem is found and expressed in terms of elementary functions. It is shown that the maximum heating temperature and the temperature field distribution depend only slightly on the shape of the heat generation region. An approximation of the density of heat sources by a uniform distribution over a hemisphere of radius equal to the ultimate range of electrons leads to a considerably underestimated maximum heating temperature. An expression is derived for determining the characteristic size of the heat generation region in GaN; this expression allows one to calculate the maximum heat temperature with an accuracy of 3% in a wide range of electron beam energies.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nc71023431ced4b8b98dd743632f548f5
14 Ne1afdb4f0ac84577a0100a548dcb7ec1
15 sg:journal.1136591
16 schema:keywords Carlo method
17 GaN
18 GaN samples
19 Monte Carlo method
20 accuracy
21 analytical solution
22 approximation
23 beam energy
24 calculations
25 cases
26 characteristic size
27 conduction problem
28 density
29 distribution
30 effect
31 electron beam energy
32 electron energy loss
33 electron probe
34 electrons
35 elementary functions
36 ellipsoids
37 energy
38 energy loss
39 expression
40 field
41 field distribution
42 function
43 generation
44 generation region
45 heat
46 heat conduction problem
47 heat generation
48 heat generation region
49 heat source
50 heat temperature
51 heating temperature
52 hemisphere
53 hemisphere of radius
54 interaction
55 loss
56 maximum heating temperature
57 method
58 order
59 probe
60 problem
61 process
62 radius
63 range
64 region
65 samples
66 shape
67 size
68 solution
69 source
70 stationary temperature field
71 temperature
72 temperature field
73 temperature field distribution
74 terms
75 thermal effects
76 ultimate range
77 uniform distribution
78 uniform heat generation
79 wide range
80 schema:name Calculation of the thermal effect of an electron probe on a sample of GaN
81 schema:pagination 811-817
82 schema:productId N3bb9a516cf2b44dc8e14c28cb0399ce9
83 Nfaed8e7463bb4c3d939a42979d724964
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042556637
85 https://doi.org/10.1134/1.1371357
86 schema:sdDatePublished 2022-05-20T07:21
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N6eca55a523794589a97e7845a47e475a
89 schema:url https://doi.org/10.1134/1.1371357
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N024c2678200641aab531bfe13d474c1a rdf:first sg:person.011734136116.54
94 rdf:rest Nf86543136d74496a8fdb2459a5b7aa88
95 N05fba9f4b7a54e9f832c5a9531bf2c1f rdf:first sg:person.07627571270.46
96 rdf:rest N024c2678200641aab531bfe13d474c1a
97 N0ea739ba56dd440a9c3ece7e4324e231 rdf:first sg:person.07573336601.04
98 rdf:rest rdf:nil
99 N3bb9a516cf2b44dc8e14c28cb0399ce9 schema:name dimensions_id
100 schema:value pub.1042556637
101 rdf:type schema:PropertyValue
102 N6eca55a523794589a97e7845a47e475a schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nc71023431ced4b8b98dd743632f548f5 schema:issueNumber 5
105 rdf:type schema:PublicationIssue
106 Ne1afdb4f0ac84577a0100a548dcb7ec1 schema:volumeNumber 43
107 rdf:type schema:PublicationVolume
108 Nf86543136d74496a8fdb2459a5b7aa88 rdf:first sg:person.016037435257.14
109 rdf:rest N0ea739ba56dd440a9c3ece7e4324e231
110 Nfaed8e7463bb4c3d939a42979d724964 schema:name doi
111 schema:value 10.1134/1.1371357
112 rdf:type schema:PropertyValue
113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
117 schema:name Classical Physics
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
120 schema:name Condensed Matter Physics
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
123 schema:name Quantum Physics
124 rdf:type schema:DefinedTerm
125 sg:journal.1136591 schema:issn 0367-3294
126 1063-7834
127 schema:name Physics of the Solid State
128 schema:publisher Pleiades Publishing
129 rdf:type schema:Periodical
130 sg:person.011734136116.54 schema:affiliation grid-institutes:grid.423485.c
131 schema:familyName Galaktionov
132 schema:givenName E. V.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011734136116.54
134 rdf:type schema:Person
135 sg:person.016037435257.14 schema:affiliation grid-institutes:grid.423485.c
136 schema:familyName Tret’yakov
137 schema:givenName V. V.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037435257.14
139 rdf:type schema:Person
140 sg:person.07573336601.04 schema:affiliation grid-institutes:grid.423485.c
141 schema:familyName Tropp
142 schema:givenName É. A.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07573336601.04
144 rdf:type schema:Person
145 sg:person.07627571270.46 schema:affiliation grid-institutes:grid.423485.c
146 schema:familyName Bakaleinikov
147 schema:givenName L. A.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07627571270.46
149 rdf:type schema:Person
150 sg:pub.10.1007/978-1-4613-3273-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002821344
151 https://doi.org/10.1007/978-1-4613-3273-2
152 rdf:type schema:CreativeWork
153 grid-institutes:grid.423485.c schema:alternateName Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
154 schema:name Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...