Ontology type: schema:ScholarlyArticle
2001-04
AUTHORSP. A. Ivanov, T. P. Samsonova, V. N. Panteleev, D. Yu. Polyakov
ABSTRACTThe nonequilibrium field effect associated with deep surface states at the SiO2/6H-SiC interface has been observed and studied in a 6H-SiC MOSFET of depletion-accumulation type. An analysis of the relaxation of channel conductance at elevated temperatures upon filling of the surface traps with nonequilibrium carriers has shown that the energy distribution of the surface traps has the form of a narrow Gaussian peak in the upper half of the 6H-SiC band gap, with a peak energy EC−Etm = 1.19eV, peak width ΔEt≈85 meV, and electron capture cross section σn≈10−14 cm2. These surface states are believed to have the fundamental nature of “oxidation defects” similar to Pb centers in the SiO2-Si system (of dangling silicon bonds). More... »
PAGES468-473
http://scigraph.springernature.com/pub.10.1134/1.1365197
DOIhttp://dx.doi.org/10.1134/1.1365197
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1005157510
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Ivanov",
"givenName": "P. A.",
"id": "sg:person.010230425734.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010230425734.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Samsonova",
"givenName": "T. P.",
"id": "sg:person.010276541134.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010276541134.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Panteleev",
"givenName": "V. N.",
"id": "sg:person.015041541011.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015041541011.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Polyakov",
"givenName": "D. Yu.",
"type": "Person"
}
],
"datePublished": "2001-04",
"datePublishedReg": "2001-04-01",
"description": "The nonequilibrium field effect associated with deep surface states at the SiO2/6H-SiC interface has been observed and studied in a 6H-SiC MOSFET of depletion-accumulation type. An analysis of the relaxation of channel conductance at elevated temperatures upon filling of the surface traps with nonequilibrium carriers has shown that the energy distribution of the surface traps has the form of a narrow Gaussian peak in the upper half of the 6H-SiC band gap, with a peak energy EC\u2212Etm = 1.19eV, peak width \u0394Et\u224885 meV, and electron capture cross section \u03c3n\u224810\u221214 cm2. These surface states are believed to have the fundamental nature of \u201coxidation defects\u201d similar to Pb centers in the SiO2-Si system (of dangling silicon bonds).",
"genre": "article",
"id": "sg:pub.10.1134/1.1365197",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136692",
"issn": [
"1063-7826",
"1090-6479"
],
"name": "Semiconductors",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "35"
}
],
"keywords": [
"field effects",
"surface states",
"surface traps",
"electron capture cross sections",
"deep surface states",
"capture cross section",
"SiO2-Si system",
"elevated temperatures",
"nonequilibrium carriers",
"energy distribution",
"band gap",
"peak energy",
"Pb centers",
"narrow Gaussian peaks",
"cross sections",
"deep traps",
"Gaussian peaks",
"peak width",
"interface",
"fundamental nature",
"MOSFETs",
"traps",
"MeV",
"cm2",
"temperature",
"state",
"channel conductance",
"upper half",
"energy",
"width",
"relaxation",
"carriers",
"effect",
"distribution",
"peak",
"gap",
"oxidation defects",
"system",
"conductance",
"nature",
"defects",
"form",
"sections",
"analysis",
"types",
"center",
"study",
"half"
],
"name": "A study of deep traps at the SiO2/6H-SiC interface relying upon the nonequilibrium field effect",
"pagination": "468-473",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1005157510"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/1.1365197"
]
}
],
"sameAs": [
"https://doi.org/10.1134/1.1365197",
"https://app.dimensions.ai/details/publication/pub.1005157510"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_316.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/1.1365197"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1365197'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1365197'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1365197'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1365197'
This table displays all metadata directly associated to this object as RDF triples.
129 TRIPLES
20 PREDICATES
74 URIs
65 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/1.1365197 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0204 |
3 | ″ | ″ | anzsrc-for:0206 |
4 | ″ | schema:author | Nfca19d46550040889def73385e423f96 |
5 | ″ | schema:datePublished | 2001-04 |
6 | ″ | schema:datePublishedReg | 2001-04-01 |
7 | ″ | schema:description | The nonequilibrium field effect associated with deep surface states at the SiO2/6H-SiC interface has been observed and studied in a 6H-SiC MOSFET of depletion-accumulation type. An analysis of the relaxation of channel conductance at elevated temperatures upon filling of the surface traps with nonequilibrium carriers has shown that the energy distribution of the surface traps has the form of a narrow Gaussian peak in the upper half of the 6H-SiC band gap, with a peak energy EC−Etm = 1.19eV, peak width ΔEt≈85 meV, and electron capture cross section σn≈10−14 cm2. These surface states are believed to have the fundamental nature of “oxidation defects” similar to Pb centers in the SiO2-Si system (of dangling silicon bonds). |
8 | ″ | schema:genre | article |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N0db9987a15644dae824bbf6589974317 |
11 | ″ | ″ | Nb1512c88e794413e80816ddcd85c1fd2 |
12 | ″ | ″ | sg:journal.1136692 |
13 | ″ | schema:keywords | Gaussian peaks |
14 | ″ | ″ | MOSFETs |
15 | ″ | ″ | MeV |
16 | ″ | ″ | Pb centers |
17 | ″ | ″ | SiO2-Si system |
18 | ″ | ″ | analysis |
19 | ″ | ″ | band gap |
20 | ″ | ″ | capture cross section |
21 | ″ | ″ | carriers |
22 | ″ | ″ | center |
23 | ″ | ″ | channel conductance |
24 | ″ | ″ | cm2 |
25 | ″ | ″ | conductance |
26 | ″ | ″ | cross sections |
27 | ″ | ″ | deep surface states |
28 | ″ | ″ | deep traps |
29 | ″ | ″ | defects |
30 | ″ | ″ | distribution |
31 | ″ | ″ | effect |
32 | ″ | ″ | electron capture cross sections |
33 | ″ | ″ | elevated temperatures |
34 | ″ | ″ | energy |
35 | ″ | ″ | energy distribution |
36 | ″ | ″ | field effects |
37 | ″ | ″ | form |
38 | ″ | ″ | fundamental nature |
39 | ″ | ″ | gap |
40 | ″ | ″ | half |
41 | ″ | ″ | interface |
42 | ″ | ″ | narrow Gaussian peaks |
43 | ″ | ″ | nature |
44 | ″ | ″ | nonequilibrium carriers |
45 | ″ | ″ | oxidation defects |
46 | ″ | ″ | peak |
47 | ″ | ″ | peak energy |
48 | ″ | ″ | peak width |
49 | ″ | ″ | relaxation |
50 | ″ | ″ | sections |
51 | ″ | ″ | state |
52 | ″ | ″ | study |
53 | ″ | ″ | surface states |
54 | ″ | ″ | surface traps |
55 | ″ | ″ | system |
56 | ″ | ″ | temperature |
57 | ″ | ″ | traps |
58 | ″ | ″ | types |
59 | ″ | ″ | upper half |
60 | ″ | ″ | width |
61 | ″ | schema:name | A study of deep traps at the SiO2/6H-SiC interface relying upon the nonequilibrium field effect |
62 | ″ | schema:pagination | 468-473 |
63 | ″ | schema:productId | N357b3a0c79a24b42afcfc61ef217c44e |
64 | ″ | ″ | N4607f7f323e546ccb660a3229b3ab57e |
65 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005157510 |
66 | ″ | ″ | https://doi.org/10.1134/1.1365197 |
67 | ″ | schema:sdDatePublished | 2022-08-04T16:52 |
68 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
69 | ″ | schema:sdPublisher | N8332bece7f5d4b3f87254b5a511c13f1 |
70 | ″ | schema:url | https://doi.org/10.1134/1.1365197 |
71 | ″ | sgo:license | sg:explorer/license/ |
72 | ″ | sgo:sdDataset | articles |
73 | ″ | rdf:type | schema:ScholarlyArticle |
74 | N0db9987a15644dae824bbf6589974317 | schema:volumeNumber | 35 |
75 | ″ | rdf:type | schema:PublicationVolume |
76 | N357b3a0c79a24b42afcfc61ef217c44e | schema:name | doi |
77 | ″ | schema:value | 10.1134/1.1365197 |
78 | ″ | rdf:type | schema:PropertyValue |
79 | N3e457f25d0a2453297ed32e20916277b | rdf:first | Ne78f801befd6484cb7457b22cee5d442 |
80 | ″ | rdf:rest | rdf:nil |
81 | N4607f7f323e546ccb660a3229b3ab57e | schema:name | dimensions_id |
82 | ″ | schema:value | pub.1005157510 |
83 | ″ | rdf:type | schema:PropertyValue |
84 | N525e66ec0d7c42b7b0b0fa826322db67 | rdf:first | sg:person.015041541011.53 |
85 | ″ | rdf:rest | N3e457f25d0a2453297ed32e20916277b |
86 | N8332bece7f5d4b3f87254b5a511c13f1 | schema:name | Springer Nature - SN SciGraph project |
87 | ″ | rdf:type | schema:Organization |
88 | Nb1512c88e794413e80816ddcd85c1fd2 | schema:issueNumber | 4 |
89 | ″ | rdf:type | schema:PublicationIssue |
90 | Nb716d646fb97400d9a32b46a21e6183b | rdf:first | sg:person.010276541134.45 |
91 | ″ | rdf:rest | N525e66ec0d7c42b7b0b0fa826322db67 |
92 | Ne78f801befd6484cb7457b22cee5d442 | schema:affiliation | grid-institutes:grid.423485.c |
93 | ″ | schema:familyName | Polyakov |
94 | ″ | schema:givenName | D. Yu. |
95 | ″ | rdf:type | schema:Person |
96 | Nfca19d46550040889def73385e423f96 | rdf:first | sg:person.010230425734.18 |
97 | ″ | rdf:rest | Nb716d646fb97400d9a32b46a21e6183b |
98 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
99 | ″ | schema:name | Physical Sciences |
100 | ″ | rdf:type | schema:DefinedTerm |
101 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Condensed Matter Physics |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Quantum Physics |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | sg:journal.1136692 | schema:issn | 1063-7826 |
108 | ″ | ″ | 1090-6479 |
109 | ″ | schema:name | Semiconductors |
110 | ″ | schema:publisher | Pleiades Publishing |
111 | ″ | rdf:type | schema:Periodical |
112 | sg:person.010230425734.18 | schema:affiliation | grid-institutes:grid.423485.c |
113 | ″ | schema:familyName | Ivanov |
114 | ″ | schema:givenName | P. A. |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010230425734.18 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.010276541134.45 | schema:affiliation | grid-institutes:grid.423485.c |
118 | ″ | schema:familyName | Samsonova |
119 | ″ | schema:givenName | T. P. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010276541134.45 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.015041541011.53 | schema:affiliation | grid-institutes:grid.423485.c |
123 | ″ | schema:familyName | Panteleev |
124 | ″ | schema:givenName | V. N. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015041541011.53 |
126 | ″ | rdf:type | schema:Person |
127 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia |
128 | ″ | schema:name | Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia |
129 | ″ | rdf:type | schema:Organization |