Fluctuation model of current-driven magnon excitation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-01

AUTHORS

M. V. Tsoi, V. S. Tsoi

ABSTRACT

A model is suggested that explains the stationary high-frequency magnetization oscillations observed previously by M. Tsoet al. when passing dc current through a silver tip mounted on a magnetic Co/Cu multilayer. At the interface between nonmagnetic and ferromagnetic (N/F) metals, Aronov’s gap δA (difference in the electrochemical potentials of electrons with opposite spins) arises upon the passage of electric current, thereby energetically promoting magnon creation. Electrons flowing from the nonmagnetic to the ferromagnetic metal become spin-polarized. In a magnetic field, magnetization fluctuations in a mesoscopic ferromagnet give rise to magnetization precession around the magnetic field. The precession is damped due to the viscous losses. In the presence of spin-polarized electron flow, the fluctuations also produce a current-induced torque that compensates for the dissipative torque, leading to stationary high-frequency magnetization oscillations. More... »

PAGES

98-102

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1358429

DOI

http://dx.doi.org/10.1134/1.1358429

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017949346


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia", 
            "Department of Physics and Astronomy, Michigan State University, 48824-1116, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsoi", 
        "givenName": "M. V.", 
        "id": "sg:person.0757753526.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757753526.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics", 
          "id": "https://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsoi", 
        "givenName": "V. S.", 
        "id": "sg:person.015304717463.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304717463.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.590813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014822537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016807729", 
          "https://doi.org/10.1038/35017512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016807729", 
          "https://doi.org/10.1038/35017512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(99)00043-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017292149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1936.0031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018232590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.r3213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032688731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.r3213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032688731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-82499-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033001114", 
          "https://doi.org/10.1007/978-3-642-82499-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-82499-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033001114", 
          "https://doi.org/10.1007/978-3-642-82499-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0370-1328/89/4/316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059095923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.1641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.1641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5429.867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062566192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i1996-00528-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064234619"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-01", 
    "datePublishedReg": "2001-01-01", 
    "description": "A model is suggested that explains the stationary high-frequency magnetization oscillations observed previously by M. Tsoet al. when passing dc current through a silver tip mounted on a magnetic Co/Cu multilayer. At the interface between nonmagnetic and ferromagnetic (N/F) metals, Aronov\u2019s gap \u03b4A (difference in the electrochemical potentials of electrons with opposite spins) arises upon the passage of electric current, thereby energetically promoting magnon creation. Electrons flowing from the nonmagnetic to the ferromagnetic metal become spin-polarized. In a magnetic field, magnetization fluctuations in a mesoscopic ferromagnet give rise to magnetization precession around the magnetic field. The precession is damped due to the viscous losses. In the presence of spin-polarized electron flow, the fluctuations also produce a current-induced torque that compensates for the dissipative torque, leading to stationary high-frequency magnetization oscillations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.1358429", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "name": "Fluctuation model of current-driven magnon excitation", 
    "pagination": "98-102", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5585a2f64f92bad70aa9b794f27ff956ca17bfce0fcd6743b47d0e311bba5915"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1358429"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017949346"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1358429", 
      "https://app.dimensions.ai/details/publication/pub.1017949346"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.1358429"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1358429'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1358429'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1358429'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1358429'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1358429 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N38482fab5ad54405a5a8e0f445af115f
4 schema:citation sg:pub.10.1007/978-3-642-82499-9
5 sg:pub.10.1038/35017512
6 https://doi.org/10.1016/0304-8853(96)00062-5
7 https://doi.org/10.1016/s0304-8853(99)00043-8
8 https://doi.org/10.1088/0370-1328/89/4/316
9 https://doi.org/10.1098/rspa.1936.0031
10 https://doi.org/10.1103/physrevb.48.7099
11 https://doi.org/10.1103/physrevb.54.9353
12 https://doi.org/10.1103/physrevb.57.r3213
13 https://doi.org/10.1103/physrevlett.66.2152
14 https://doi.org/10.1103/physrevlett.80.4281
15 https://doi.org/10.1103/physrevlett.84.3149
16 https://doi.org/10.1103/physrevlett.84.4212
17 https://doi.org/10.1103/revmodphys.71.1641
18 https://doi.org/10.1116/1.590813
19 https://doi.org/10.1126/science.285.5429.867
20 https://doi.org/10.1209/epl/i1996-00528-3
21 schema:datePublished 2001-01
22 schema:datePublishedReg 2001-01-01
23 schema:description A model is suggested that explains the stationary high-frequency magnetization oscillations observed previously by M. Tsoet al. when passing dc current through a silver tip mounted on a magnetic Co/Cu multilayer. At the interface between nonmagnetic and ferromagnetic (N/F) metals, Aronov’s gap δA (difference in the electrochemical potentials of electrons with opposite spins) arises upon the passage of electric current, thereby energetically promoting magnon creation. Electrons flowing from the nonmagnetic to the ferromagnetic metal become spin-polarized. In a magnetic field, magnetization fluctuations in a mesoscopic ferromagnet give rise to magnetization precession around the magnetic field. The precession is damped due to the viscous losses. In the presence of spin-polarized electron flow, the fluctuations also produce a current-induced torque that compensates for the dissipative torque, leading to stationary high-frequency magnetization oscillations.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N597af557fb144ce49975085e43108bca
28 N7f8a8fe53f524a69a73555175ebd0634
29 sg:journal.1052174
30 schema:name Fluctuation model of current-driven magnon excitation
31 schema:pagination 98-102
32 schema:productId N7053092de93c4d8f94ec948caf6abfc8
33 N7751b62dec4d4fef80aa30362a2cf9d7
34 Nab0847a8a0504e5cb9bc5565d0369f5c
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017949346
36 https://doi.org/10.1134/1.1358429
37 schema:sdDatePublished 2019-04-10T14:06
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Ndd302ea7f6a54784a2fd3edf1fac32ed
40 schema:url http://link.springer.com/10.1134/1.1358429
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N38482fab5ad54405a5a8e0f445af115f rdf:first sg:person.0757753526.63
45 rdf:rest N57e18fbba95f46c4a7f3acefe7b3f7a6
46 N57e18fbba95f46c4a7f3acefe7b3f7a6 rdf:first sg:person.015304717463.42
47 rdf:rest rdf:nil
48 N597af557fb144ce49975085e43108bca schema:issueNumber 2
49 rdf:type schema:PublicationIssue
50 N7053092de93c4d8f94ec948caf6abfc8 schema:name dimensions_id
51 schema:value pub.1017949346
52 rdf:type schema:PropertyValue
53 N7751b62dec4d4fef80aa30362a2cf9d7 schema:name doi
54 schema:value 10.1134/1.1358429
55 rdf:type schema:PropertyValue
56 N7f8a8fe53f524a69a73555175ebd0634 schema:volumeNumber 73
57 rdf:type schema:PublicationVolume
58 Nab0847a8a0504e5cb9bc5565d0369f5c schema:name readcube_id
59 schema:value 5585a2f64f92bad70aa9b794f27ff956ca17bfce0fcd6743b47d0e311bba5915
60 rdf:type schema:PropertyValue
61 Ndd302ea7f6a54784a2fd3edf1fac32ed schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
64 schema:name Engineering
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
67 schema:name Materials Engineering
68 rdf:type schema:DefinedTerm
69 sg:journal.1052174 schema:issn 0021-3640
70 1090-6487
71 schema:name JETP Letters
72 rdf:type schema:Periodical
73 sg:person.015304717463.42 schema:affiliation https://www.grid.ac/institutes/grid.418975.6
74 schema:familyName Tsoi
75 schema:givenName V. S.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304717463.42
77 rdf:type schema:Person
78 sg:person.0757753526.63 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
79 schema:familyName Tsoi
80 schema:givenName M. V.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757753526.63
82 rdf:type schema:Person
83 sg:pub.10.1007/978-3-642-82499-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033001114
84 https://doi.org/10.1007/978-3-642-82499-9
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/35017512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016807729
87 https://doi.org/10.1038/35017512
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0304-8853(99)00043-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017292149
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1088/0370-1328/89/4/316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059095923
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1098/rspa.1936.0031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018232590
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevb.48.7099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568994
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevb.57.r3213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032688731
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevlett.66.2152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802372
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevlett.80.4281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817457
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevlett.84.3149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002331710
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.84.4212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821221
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/revmodphys.71.1641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839446
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1116/1.590813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014822537
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1126/science.285.5429.867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566192
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1209/epl/i1996-00528-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064234619
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
120 schema:name Department of Physics and Astronomy, Michigan State University, 48824-1116, East Lansing, MI, USA
121 Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
122 rdf:type schema:Organization
123 https://www.grid.ac/institutes/grid.418975.6 schema:alternateName Institute of Solid State Physics
124 schema:name Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...