The temperature of nonspherical circumstellar dust grains View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-10

AUTHORS

N. V. Voshchinnikov, D. A. Semenov

ABSTRACT

The temperatures of prolate and oblate spheroidal dust grains in the envelopes of stars of various spectral types are calculated. Homogeneous particles with aspect ratios a/b≤10 composed of amorphous carbon, iron, dirty ice, various silicates, and other materials are considered. The temperatures of spherical and spheroidal particles were found to vary similarly with particle size, distance to the star, and stellar temperature. The temperature ratio Td(spheroid)/Td(sphere) depends most strongly on the grain chemical composition and shape. Spheroidal grains are generally colder than spherical particles of the same volume; only iron spheroids can be slightly hotter than iron spheres. At a/b≈2, the temperature differences do not exceed 10%. If a/b≥4, the temperatures can differ by 30–40%. For a fixed dust mass in the medium, the fluxes at wavelengths λ≥100 are higher if the grains are nonspherical, which gives overestimated dust masses from millimeter observations. The effect of grain shape should also be taken into account when modeling Galactic-dust emission properties, which are calculated when searching for fluctuations of the cosmic microwave background radiation in its Wien wing. More... »

PAGES

679-690

References to SciGraph publications

  • 1949-01. Brightness Variations of the Solar Corona in NATURE
  • 1993-06. Optical properties of spheroidal particles in ASTROPHYSICS AND SPACE SCIENCE
  • 1981. Dust Formation Processes Around Red Giants and Supergiants in PHYSICAL PROCESSES IN RED GIANTS
  • 1991-09. Mass loss mechanisms in evolved stars in THE ASTRONOMY AND ASTROPHYSICS REVIEW
  • 1987. Formation and Destruction of Dust Grains in Circumstellar Regions in CIRCUMSTELLAR MATTER
  • 1987-08. Optical properties of circumstellar silicates in the visible and the near-infrared in ASTROPHYSICS AND SPACE SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/1.1316114

    DOI

    http://dx.doi.org/10.1134/1.1316114

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011216997


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sobolev Astronomical Institute, St. Petersburg State University, Bibliotechnaya pl. 2, 198904, St. Petersburg-Peterhof, Russia", 
              "id": "http://www.grid.ac/institutes/grid.15447.33", 
              "name": [
                "Sobolev Astronomical Institute, St. Petersburg State University, Bibliotechnaya pl. 2, 198904, St. Petersburg-Peterhof, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Voshchinnikov", 
            "givenName": "N. V.", 
            "id": "sg:person.0652717661.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652717661.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sobolev Astronomical Institute, St. Petersburg State University, Bibliotechnaya pl. 2, 198904, St. Petersburg-Peterhof, Russia", 
              "id": "http://www.grid.ac/institutes/grid.15447.33", 
              "name": [
                "Sobolev Astronomical Institute, St. Petersburg State University, Bibliotechnaya pl. 2, 198904, St. Petersburg-Peterhof, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Semenov", 
            "givenName": "D. A.", 
            "id": "sg:person.013166203321.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166203321.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-009-3887-8_137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089748871", 
              "https://doi.org/10.1007/978-94-009-3887-8_137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-8492-9_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021939963", 
              "https://doi.org/10.1007/978-94-009-8492-9_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00658095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044368996", 
              "https://doi.org/10.1007/bf00658095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/163024a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025395349", 
              "https://doi.org/10.1038/163024a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00661261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035593643", 
              "https://doi.org/10.1007/bf00661261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00872769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046345400", 
              "https://doi.org/10.1007/bf00872769"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-10", 
        "datePublishedReg": "2000-10-01", 
        "description": "The temperatures of prolate and oblate spheroidal dust grains in the envelopes of stars of various spectral types are calculated. Homogeneous particles with aspect ratios a/b\u226410 composed of amorphous carbon, iron, dirty ice, various silicates, and other materials are considered. The temperatures of spherical and spheroidal particles were found to vary similarly with particle size, distance to the star, and stellar temperature. The temperature ratio Td(spheroid)/Td(sphere) depends most strongly on the grain chemical composition and shape. Spheroidal grains are generally colder than spherical particles of the same volume; only iron spheroids can be slightly hotter than iron spheres. At a/b\u22482, the temperature differences do not exceed 10%. If a/b\u22654, the temperatures can differ by 30\u201340%. For a fixed dust mass in the medium, the fluxes at wavelengths \u03bb\u2265100 are higher if the grains are nonspherical, which gives overestimated dust masses from millimeter observations. The effect of grain shape should also be taken into account when modeling Galactic-dust emission properties, which are calculated when searching for fluctuations of the cosmic microwave background radiation in its Wien wing.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/1.1316114", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136271", 
            "issn": [
              "0320-0108", 
              "0360-0327"
            ], 
            "name": "Astronomy Letters", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "dust grains", 
          "dust mass", 
          "cosmic microwave background radiation", 
          "microwave background radiation", 
          "envelopes of stars", 
          "circumstellar dust grains", 
          "stellar temperatures", 
          "millimeter observations", 
          "background radiation", 
          "spectral type", 
          "temperature ratio", 
          "emission properties", 
          "stars", 
          "amorphous carbon", 
          "iron spheres", 
          "dirty ice", 
          "spheroidal particles", 
          "homogeneous particles", 
          "particles", 
          "spherical particles", 
          "wavelength", 
          "chemical composition", 
          "radiation", 
          "temperature", 
          "aspect ratio", 
          "particle size", 
          "mass", 
          "prolate", 
          "flux", 
          "shape", 
          "fluctuations", 
          "grains", 
          "distance", 
          "properties", 
          "envelope", 
          "spheroids", 
          "ratio", 
          "sphere", 
          "materials", 
          "grain shape", 
          "carbon", 
          "same volume", 
          "account", 
          "wing", 
          "composition", 
          "medium", 
          "silicate", 
          "temperature difference", 
          "size", 
          "ice", 
          "effect", 
          "iron", 
          "volume", 
          "types", 
          "differences", 
          "observations", 
          "temperatures of prolate", 
          "grain chemical composition", 
          "iron spheroids", 
          "Galactic-dust emission properties", 
          "Wien wing", 
          "nonspherical circumstellar dust grains"
        ], 
        "name": "The temperature of nonspherical circumstellar dust grains", 
        "pagination": "679-690", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011216997"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/1.1316114"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/1.1316114", 
          "https://app.dimensions.ai/details/publication/pub.1011216997"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_313.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/1.1316114"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1316114'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1316114'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1316114'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1316114'


     

    This table displays all metadata directly associated to this object as RDF triples.

    151 TRIPLES      22 PREDICATES      94 URIs      80 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/1.1316114 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author N10f20036015b4595be92f7c07d1a2293
    4 schema:citation sg:pub.10.1007/978-94-009-3887-8_137
    5 sg:pub.10.1007/978-94-009-8492-9_33
    6 sg:pub.10.1007/bf00658095
    7 sg:pub.10.1007/bf00661261
    8 sg:pub.10.1007/bf00872769
    9 sg:pub.10.1038/163024a0
    10 schema:datePublished 2000-10
    11 schema:datePublishedReg 2000-10-01
    12 schema:description The temperatures of prolate and oblate spheroidal dust grains in the envelopes of stars of various spectral types are calculated. Homogeneous particles with aspect ratios a/b≤10 composed of amorphous carbon, iron, dirty ice, various silicates, and other materials are considered. The temperatures of spherical and spheroidal particles were found to vary similarly with particle size, distance to the star, and stellar temperature. The temperature ratio Td(spheroid)/Td(sphere) depends most strongly on the grain chemical composition and shape. Spheroidal grains are generally colder than spherical particles of the same volume; only iron spheroids can be slightly hotter than iron spheres. At a/b≈2, the temperature differences do not exceed 10%. If a/b≥4, the temperatures can differ by 30–40%. For a fixed dust mass in the medium, the fluxes at wavelengths λ≥100 are higher if the grains are nonspherical, which gives overestimated dust masses from millimeter observations. The effect of grain shape should also be taken into account when modeling Galactic-dust emission properties, which are calculated when searching for fluctuations of the cosmic microwave background radiation in its Wien wing.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf Nd62247502e804adeb9b5088bd0988f79
    17 Nf987dba1e5494ebc9d577aa64a2b985c
    18 sg:journal.1136271
    19 schema:keywords Galactic-dust emission properties
    20 Wien wing
    21 account
    22 amorphous carbon
    23 aspect ratio
    24 background radiation
    25 carbon
    26 chemical composition
    27 circumstellar dust grains
    28 composition
    29 cosmic microwave background radiation
    30 differences
    31 dirty ice
    32 distance
    33 dust grains
    34 dust mass
    35 effect
    36 emission properties
    37 envelope
    38 envelopes of stars
    39 fluctuations
    40 flux
    41 grain chemical composition
    42 grain shape
    43 grains
    44 homogeneous particles
    45 ice
    46 iron
    47 iron spheres
    48 iron spheroids
    49 mass
    50 materials
    51 medium
    52 microwave background radiation
    53 millimeter observations
    54 nonspherical circumstellar dust grains
    55 observations
    56 particle size
    57 particles
    58 prolate
    59 properties
    60 radiation
    61 ratio
    62 same volume
    63 shape
    64 silicate
    65 size
    66 spectral type
    67 sphere
    68 spherical particles
    69 spheroidal particles
    70 spheroids
    71 stars
    72 stellar temperatures
    73 temperature
    74 temperature difference
    75 temperature ratio
    76 temperatures of prolate
    77 types
    78 volume
    79 wavelength
    80 wing
    81 schema:name The temperature of nonspherical circumstellar dust grains
    82 schema:pagination 679-690
    83 schema:productId N9abd08c1433f4071ad83cd30dd2c4149
    84 Na4b71f6c59984f67a63ca048118fb982
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011216997
    86 https://doi.org/10.1134/1.1316114
    87 schema:sdDatePublished 2021-12-01T19:12
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher Nd318b08ba32c4be2b0bf0e1be6094a2e
    90 schema:url https://doi.org/10.1134/1.1316114
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N071bf882e17d47aaa339e75414cdbba8 rdf:first sg:person.013166203321.09
    95 rdf:rest rdf:nil
    96 N10f20036015b4595be92f7c07d1a2293 rdf:first sg:person.0652717661.40
    97 rdf:rest N071bf882e17d47aaa339e75414cdbba8
    98 N9abd08c1433f4071ad83cd30dd2c4149 schema:name doi
    99 schema:value 10.1134/1.1316114
    100 rdf:type schema:PropertyValue
    101 Na4b71f6c59984f67a63ca048118fb982 schema:name dimensions_id
    102 schema:value pub.1011216997
    103 rdf:type schema:PropertyValue
    104 Nd318b08ba32c4be2b0bf0e1be6094a2e schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 Nd62247502e804adeb9b5088bd0988f79 schema:issueNumber 10
    107 rdf:type schema:PublicationIssue
    108 Nf987dba1e5494ebc9d577aa64a2b985c schema:volumeNumber 26
    109 rdf:type schema:PublicationVolume
    110 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Physical Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Astronomical and Space Sciences
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1136271 schema:issn 0320-0108
    117 0360-0327
    118 schema:name Astronomy Letters
    119 schema:publisher Pleiades Publishing
    120 rdf:type schema:Periodical
    121 sg:person.013166203321.09 schema:affiliation grid-institutes:grid.15447.33
    122 schema:familyName Semenov
    123 schema:givenName D. A.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166203321.09
    125 rdf:type schema:Person
    126 sg:person.0652717661.40 schema:affiliation grid-institutes:grid.15447.33
    127 schema:familyName Voshchinnikov
    128 schema:givenName N. V.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652717661.40
    130 rdf:type schema:Person
    131 sg:pub.10.1007/978-94-009-3887-8_137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089748871
    132 https://doi.org/10.1007/978-94-009-3887-8_137
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/978-94-009-8492-9_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021939963
    135 https://doi.org/10.1007/978-94-009-8492-9_33
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/bf00658095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044368996
    138 https://doi.org/10.1007/bf00658095
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/bf00661261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035593643
    141 https://doi.org/10.1007/bf00661261
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/bf00872769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046345400
    144 https://doi.org/10.1007/bf00872769
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/163024a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025395349
    147 https://doi.org/10.1038/163024a0
    148 rdf:type schema:CreativeWork
    149 grid-institutes:grid.15447.33 schema:alternateName Sobolev Astronomical Institute, St. Petersburg State University, Bibliotechnaya pl. 2, 198904, St. Petersburg-Peterhof, Russia
    150 schema:name Sobolev Astronomical Institute, St. Petersburg State University, Bibliotechnaya pl. 2, 198904, St. Petersburg-Peterhof, Russia
    151 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...