Nonadiabatic excitation of iodine molecules in the translational disequilibrium zone of a shock wave View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-10

AUTHORS

V. Yu. Velikodnyi, A. V. Emel’yanov, A. V. Eremin

ABSTRACT

Short-lived peaks of nonequilibrium emission are detected at 320–350 nm in shock-wave fronts in He, Ne, Ar, and H2 containing from 0.1 to 3% iodine molecules. The effect is observed in the range of Mach numbers from 3.2 to 6.3 for initial pressures of the mixtures ranging from 133 to 2660 Pa. The emission observed is assigned to the electronic I2(D3Σ→B3Π) band, which is located at excitation energies 5.45→1.8 eV, i.e., significantly above the dissociation threshold of iodine molecules (1.54 eV). An analysis of the results shows that the leading role in the excitation of iodine molecules is played by high-energy collisions in the translational disequilibrium zone of the shock wave. The best description of the experimental data is achieved for the value of the effective collision energy in the front calculated on the basis of a numerical solution of the Boltzmann equation by a modified Tamm-Mott-Smith method. The absolute values of this energy under the conditions of the experiments performed are roughly 10 times greater than the mean collision energy in the equilibrium zone behind the shock wave. The probability of nonadiabatic supercollisions of the type I2+I2→I2(D3Σ)+I2−6.4eV exceeds the adiabatic values by a factor of 1015–1020. More... »

PAGES

1150-1158

Journal

TITLE

Technical Physics

ISSUE

10

VOLUME

44

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1259489

DOI

http://dx.doi.org/10.1134/1.1259489

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018368449


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Scientific-Research Center for the Thermal Physics of Pulsed Effects, Joint Institute of High Temperatures, Russian Academy of Sciences, 127412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Velikodnyi", 
        "givenName": "V. Yu.", 
        "id": "sg:person.011537220165.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537220165.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Scientific-Research Center for the Thermal Physics of Pulsed Effects, Joint Institute of High Temperatures, Russian Academy of Sciences, 127412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emel\u2019yanov", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Scientific-Research Center for the Thermal Physics of Pulsed Effects, Joint Institute of High Temperatures, Russian Academy of Sciences, 127412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eremin", 
        "givenName": "A. V.", 
        "id": "sg:person.014424512265.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s001930050058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014475547", 
          "https://doi.org/10.1007/s001930050058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-8511-7_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040552646", 
          "https://doi.org/10.1007/978-94-009-8511-7_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100139a024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055654562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp953341l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056120991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp953341l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056120991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1693047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057764828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.432092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058010124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.469338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058047326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.470096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058048078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.82.885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060457836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.82.885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060457836"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-10", 
    "datePublishedReg": "1999-10-01", 
    "description": "Short-lived peaks of nonequilibrium emission are detected at 320\u2013350 nm in shock-wave fronts in He, Ne, Ar, and H2 containing from 0.1 to 3% iodine molecules. The effect is observed in the range of Mach numbers from 3.2 to 6.3 for initial pressures of the mixtures ranging from 133 to 2660 Pa. The emission observed is assigned to the electronic I2(D3\u03a3\u2192B3\u03a0) band, which is located at excitation energies 5.45\u21921.8 eV, i.e., significantly above the dissociation threshold of iodine molecules (1.54 eV). An analysis of the results shows that the leading role in the excitation of iodine molecules is played by high-energy collisions in the translational disequilibrium zone of the shock wave. The best description of the experimental data is achieved for the value of the effective collision energy in the front calculated on the basis of a numerical solution of the Boltzmann equation by a modified Tamm-Mott-Smith method. The absolute values of this energy under the conditions of the experiments performed are roughly 10 times greater than the mean collision energy in the equilibrium zone behind the shock wave. The probability of nonadiabatic supercollisions of the type I2+I2\u2192I2(D3\u03a3)+I2\u22126.4eV exceeds the adiabatic values by a factor of 1015\u20131020.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.1259489", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136240", 
        "issn": [
          "0038-5662", 
          "0044-4642"
        ], 
        "name": "Technical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Nonadiabatic excitation of iodine molecules in the translational disequilibrium zone of a shock wave", 
    "pagination": "1150-1158", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5784e8518687a12eba6d72bd6f98698b04486eb231d12c94065a28d92c1133f8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1259489"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018368449"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1259489", 
      "https://app.dimensions.ai/details/publication/pub.1018368449"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.1259489"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1259489'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1259489'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1259489'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1259489'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1259489 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N7c052d5eeb1a4f15b85e6261554ba235
4 schema:citation sg:pub.10.1007/978-94-009-8511-7_9
5 sg:pub.10.1007/s001930050058
6 https://doi.org/10.1021/j100139a024
7 https://doi.org/10.1021/jp953341l
8 https://doi.org/10.1063/1.1693047
9 https://doi.org/10.1063/1.432092
10 https://doi.org/10.1063/1.469338
11 https://doi.org/10.1063/1.470096
12 https://doi.org/10.1103/physrev.82.885
13 schema:datePublished 1999-10
14 schema:datePublishedReg 1999-10-01
15 schema:description Short-lived peaks of nonequilibrium emission are detected at 320–350 nm in shock-wave fronts in He, Ne, Ar, and H2 containing from 0.1 to 3% iodine molecules. The effect is observed in the range of Mach numbers from 3.2 to 6.3 for initial pressures of the mixtures ranging from 133 to 2660 Pa. The emission observed is assigned to the electronic I2(D3Σ→B3Π) band, which is located at excitation energies 5.45→1.8 eV, i.e., significantly above the dissociation threshold of iodine molecules (1.54 eV). An analysis of the results shows that the leading role in the excitation of iodine molecules is played by high-energy collisions in the translational disequilibrium zone of the shock wave. The best description of the experimental data is achieved for the value of the effective collision energy in the front calculated on the basis of a numerical solution of the Boltzmann equation by a modified Tamm-Mott-Smith method. The absolute values of this energy under the conditions of the experiments performed are roughly 10 times greater than the mean collision energy in the equilibrium zone behind the shock wave. The probability of nonadiabatic supercollisions of the type I2+I2→I2(D3Σ)+I2−6.4eV exceeds the adiabatic values by a factor of 1015–1020.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N115d18ccebbd4f2ba85f1ba76828cb61
20 Nf1ab9803f1f3402da6a593afa498800b
21 sg:journal.1136240
22 schema:name Nonadiabatic excitation of iodine molecules in the translational disequilibrium zone of a shock wave
23 schema:pagination 1150-1158
24 schema:productId N067c3a463fe8406baf68eb6ff98087d0
25 N58876ac8bb284e2b85834b1c01442dc5
26 Nee4f9a0ab2d64601a2ce39241322bdaf
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018368449
28 https://doi.org/10.1134/1.1259489
29 schema:sdDatePublished 2019-04-10T19:06
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N1d08f6788c41471b9095562d38ef0d13
32 schema:url http://link.springer.com/10.1134/1.1259489
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N067c3a463fe8406baf68eb6ff98087d0 schema:name doi
37 schema:value 10.1134/1.1259489
38 rdf:type schema:PropertyValue
39 N115d18ccebbd4f2ba85f1ba76828cb61 schema:volumeNumber 44
40 rdf:type schema:PublicationVolume
41 N14067da2e65a4d59b2fb284f7fe4867a rdf:first Nad8f5ddbd4654303b0fb0c2ba59f0e8f
42 rdf:rest N657b12bfe35b4a39af6fa8031b357b18
43 N1d08f6788c41471b9095562d38ef0d13 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N58876ac8bb284e2b85834b1c01442dc5 schema:name dimensions_id
46 schema:value pub.1018368449
47 rdf:type schema:PropertyValue
48 N657b12bfe35b4a39af6fa8031b357b18 rdf:first sg:person.014424512265.37
49 rdf:rest rdf:nil
50 N7c052d5eeb1a4f15b85e6261554ba235 rdf:first sg:person.011537220165.77
51 rdf:rest N14067da2e65a4d59b2fb284f7fe4867a
52 Nad8f5ddbd4654303b0fb0c2ba59f0e8f schema:affiliation https://www.grid.ac/institutes/grid.4886.2
53 schema:familyName Emel’yanov
54 schema:givenName A. V.
55 rdf:type schema:Person
56 Nee4f9a0ab2d64601a2ce39241322bdaf schema:name readcube_id
57 schema:value 5784e8518687a12eba6d72bd6f98698b04486eb231d12c94065a28d92c1133f8
58 rdf:type schema:PropertyValue
59 Nf1ab9803f1f3402da6a593afa498800b schema:issueNumber 10
60 rdf:type schema:PublicationIssue
61 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
62 schema:name Physical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
65 schema:name Other Physical Sciences
66 rdf:type schema:DefinedTerm
67 sg:journal.1136240 schema:issn 0038-5662
68 0044-4642
69 schema:name Technical Physics
70 rdf:type schema:Periodical
71 sg:person.011537220165.77 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
72 schema:familyName Velikodnyi
73 schema:givenName V. Yu.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537220165.77
75 rdf:type schema:Person
76 sg:person.014424512265.37 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
77 schema:familyName Eremin
78 schema:givenName A. V.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37
80 rdf:type schema:Person
81 sg:pub.10.1007/978-94-009-8511-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040552646
82 https://doi.org/10.1007/978-94-009-8511-7_9
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s001930050058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014475547
85 https://doi.org/10.1007/s001930050058
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1021/j100139a024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055654562
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1021/jp953341l schema:sameAs https://app.dimensions.ai/details/publication/pub.1056120991
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1063/1.1693047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057764828
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1063/1.432092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058010124
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.469338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058047326
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1063/1.470096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058048078
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrev.82.885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060457836
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
102 schema:name Scientific-Research Center for the Thermal Physics of Pulsed Effects, Joint Institute of High Temperatures, Russian Academy of Sciences, 127412, Moscow, Russia
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...