Transverse optical phonon splitting in GaAs/AlAs superlattices grown on the GaAs(311) surface studied by the method of Raman light scattering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-01

AUTHORS

V. A. Volodin, M. D. Efremov, V. V. Preobrazhenskii’, B. R. Semyagin, V. V. Bolotov, V. A. Sachkov

ABSTRACT

GaAsn/AlAsm superlattices grown on the GaAs (311)A and (311)B surfaces by molecular-beam epitaxy were studied by Raman light scattering. The form of the Raman scattering tensor allowed the TOy and TOx modes to be separately observed using various scattering geometries (the y and x axes correspond to atomic displacements along and across facets formed on the (311)A surface, respectively). The TO1y and TO1x modes exhibited splitting in superlattices grown on a faceted GaAs(311)A surface. The degree of splitting increased for superlattices with an average GaAs layer thickness of 6 monoatomic layers and less. No splitting was observed for superlattices grown under the same conditions on the (311)B surface, which indicates that the splitting effect is probably due to the formation of GaAs quantum wires on the faceted (311)A surface. More... »

PAGES

61-66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1187947

DOI

http://dx.doi.org/10.1134/1.1187947

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025709677


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volodin", 
        "givenName": "V. A.", 
        "id": "sg:person.011447316711.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011447316711.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Efremov", 
        "givenName": "M. D.", 
        "id": "sg:person.015263206232.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263206232.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preobrazhenskii\u2019", 
        "givenName": "V. V.", 
        "id": "sg:person.010664106542.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semyagin", 
        "givenName": "B. R.", 
        "id": "sg:person.011644303155.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Sensor Microelectronics, Siberian Division, Russian Academy of Sciences, 644077, Omsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotov", 
        "givenName": "V. V.", 
        "id": "sg:person.011000402756.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000402756.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Sensor Microelectronics, Siberian Division, Russian Academy of Sciences, 644077, Omsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sachkov", 
        "givenName": "V. A.", 
        "id": "sg:person.010336443200.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010336443200.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0038-1101(96)84616-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014322858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(92)91122-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028561289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(92)91122-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028561289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(95)00132-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040815469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(95)80247-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048453922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(95)80247-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048453922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.3507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.3507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.7577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.7577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.7584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.7584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.14721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060575373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.14721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060575373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.1647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060575600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.1647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060575600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.1970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060577958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.1970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060577958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.5789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.5789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.15397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.15397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.1631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.1631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.3812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.3812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803818"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-01", 
    "datePublishedReg": "2000-01-01", 
    "description": "GaAsn/AlAsm superlattices grown on the GaAs (311)A and (311)B surfaces by molecular-beam epitaxy were studied by Raman light scattering. The form of the Raman scattering tensor allowed the TOy and TOx modes to be separately observed using various scattering geometries (the y and x axes correspond to atomic displacements along and across facets formed on the (311)A surface, respectively). The TO1y and TO1x modes exhibited splitting in superlattices grown on a faceted GaAs(311)A surface. The degree of splitting increased for superlattices with an average GaAs layer thickness of 6 monoatomic layers and less. No splitting was observed for superlattices grown under the same conditions on the (311)B surface, which indicates that the splitting effect is probably due to the formation of GaAs quantum wires on the faceted (311)A surface.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.1187947", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "Transverse optical phonon splitting in GaAs/AlAs superlattices grown on the GaAs(311) surface studied by the method of Raman light scattering", 
    "pagination": "61-66", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7a7b9f101a05f53d62915e5219be1306d7a08578ed14473b01925f2c1c1bb054"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1187947"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025709677"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1187947", 
      "https://app.dimensions.ai/details/publication/pub.1025709677"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.1187947"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1187947'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1187947'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1187947'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1187947'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1187947 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nd0f1cf0c10ce473fa0bb00ea520f07fe
4 schema:citation https://doi.org/10.1016/0022-0248(95)80247-a
5 https://doi.org/10.1016/0038-1098(95)00132-8
6 https://doi.org/10.1016/0038-1101(96)84616-8
7 https://doi.org/10.1016/0039-6028(92)91122-r
8 https://doi.org/10.1103/physrevb.45.3507
9 https://doi.org/10.1103/physrevb.49.7577
10 https://doi.org/10.1103/physrevb.49.7584
11 https://doi.org/10.1103/physrevb.51.14721
12 https://doi.org/10.1103/physrevb.51.1647
13 https://doi.org/10.1103/physrevb.52.1970
14 https://doi.org/10.1103/physrevb.52.5789
15 https://doi.org/10.1103/physrevb.55.15397
16 https://doi.org/10.1103/physrevb.57.1631
17 https://doi.org/10.1103/physrevlett.67.3812
18 schema:datePublished 2000-01
19 schema:datePublishedReg 2000-01-01
20 schema:description GaAsn/AlAsm superlattices grown on the GaAs (311)A and (311)B surfaces by molecular-beam epitaxy were studied by Raman light scattering. The form of the Raman scattering tensor allowed the TOy and TOx modes to be separately observed using various scattering geometries (the y and x axes correspond to atomic displacements along and across facets formed on the (311)A surface, respectively). The TO1y and TO1x modes exhibited splitting in superlattices grown on a faceted GaAs(311)A surface. The degree of splitting increased for superlattices with an average GaAs layer thickness of 6 monoatomic layers and less. No splitting was observed for superlattices grown under the same conditions on the (311)B surface, which indicates that the splitting effect is probably due to the formation of GaAs quantum wires on the faceted (311)A surface.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N106e375c745c41d99a3b1b5f232e4e13
25 N20025d5e0f1f49cb8d9d9ed12040afa0
26 sg:journal.1136692
27 schema:name Transverse optical phonon splitting in GaAs/AlAs superlattices grown on the GaAs(311) surface studied by the method of Raman light scattering
28 schema:pagination 61-66
29 schema:productId N0b0a3a7b4d364196a667dd35cf373183
30 N4cd2d36e2c6842ceac129d9844f8fffc
31 N94ad8e1fa59e4e559a6e0e17615b7a2b
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025709677
33 https://doi.org/10.1134/1.1187947
34 schema:sdDatePublished 2019-04-10T16:39
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nc1af4f6e40f944f0a20513b4036da3a0
37 schema:url http://link.springer.com/10.1134/1.1187947
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0b0a3a7b4d364196a667dd35cf373183 schema:name readcube_id
42 schema:value 7a7b9f101a05f53d62915e5219be1306d7a08578ed14473b01925f2c1c1bb054
43 rdf:type schema:PropertyValue
44 N106e375c745c41d99a3b1b5f232e4e13 schema:volumeNumber 34
45 rdf:type schema:PublicationVolume
46 N20025d5e0f1f49cb8d9d9ed12040afa0 schema:issueNumber 1
47 rdf:type schema:PublicationIssue
48 N33d5d3c8dc7745fa9ae1e73826270e3d rdf:first sg:person.011000402756.47
49 rdf:rest N8319946f259c472d9d2ba6b8590a7c39
50 N4cd2d36e2c6842ceac129d9844f8fffc schema:name doi
51 schema:value 10.1134/1.1187947
52 rdf:type schema:PropertyValue
53 N8319946f259c472d9d2ba6b8590a7c39 rdf:first sg:person.010336443200.72
54 rdf:rest rdf:nil
55 N94ad8e1fa59e4e559a6e0e17615b7a2b schema:name dimensions_id
56 schema:value pub.1025709677
57 rdf:type schema:PropertyValue
58 N9d3441ee7e2d4e87b87e22d907fc5613 rdf:first sg:person.011644303155.87
59 rdf:rest N33d5d3c8dc7745fa9ae1e73826270e3d
60 Nbda321a3329f4e2e8565107649ffcc0f rdf:first sg:person.015263206232.10
61 rdf:rest Ne89f4126a037451c866342c4ac6bb8d1
62 Nc1af4f6e40f944f0a20513b4036da3a0 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nd0f1cf0c10ce473fa0bb00ea520f07fe rdf:first sg:person.011447316711.83
65 rdf:rest Nbda321a3329f4e2e8565107649ffcc0f
66 Ne89f4126a037451c866342c4ac6bb8d1 rdf:first sg:person.010664106542.73
67 rdf:rest N9d3441ee7e2d4e87b87e22d907fc5613
68 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
69 schema:name Chemical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
72 schema:name Physical Chemistry (incl. Structural)
73 rdf:type schema:DefinedTerm
74 sg:journal.1136692 schema:issn 1063-7826
75 1090-6479
76 schema:name Semiconductors
77 rdf:type schema:Periodical
78 sg:person.010336443200.72 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
79 schema:familyName Sachkov
80 schema:givenName V. A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010336443200.72
82 rdf:type schema:Person
83 sg:person.010664106542.73 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
84 schema:familyName Preobrazhenskii’
85 schema:givenName V. V.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73
87 rdf:type schema:Person
88 sg:person.011000402756.47 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
89 schema:familyName Bolotov
90 schema:givenName V. V.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000402756.47
92 rdf:type schema:Person
93 sg:person.011447316711.83 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
94 schema:familyName Volodin
95 schema:givenName V. A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011447316711.83
97 rdf:type schema:Person
98 sg:person.011644303155.87 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
99 schema:familyName Semyagin
100 schema:givenName B. R.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87
102 rdf:type schema:Person
103 sg:person.015263206232.10 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
104 schema:familyName Efremov
105 schema:givenName M. D.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263206232.10
107 rdf:type schema:Person
108 https://doi.org/10.1016/0022-0248(95)80247-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048453922
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0038-1098(95)00132-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040815469
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0038-1101(96)84616-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014322858
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0039-6028(92)91122-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1028561289
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevb.45.3507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060561403
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.49.7577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060571370
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.49.7584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060571371
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevb.51.14721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060575373
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.51.1647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060575600
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.52.1970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060577958
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.52.5789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060578432
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.55.15397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060583895
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.57.1631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060587705
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.67.3812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803818
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.450314.7 schema:alternateName Institute of Semiconductor Physics
137 schema:name Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences, 630090, Novosibirsk, Russia
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
140 schema:name Institute of Sensor Microelectronics, Siberian Division, Russian Academy of Sciences, 644077, Omsk, Russia
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...