Influence of indium doping on the formation of silicon-(gallium vacancy) complexes in gallium arsenide grown by molecular-beam epitaxy at low ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-10

AUTHORS

A. E. Kunitsyn, V. V. Chaldyshev, S. P. Vul’, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin

ABSTRACT

Low-temperature photoluminescence (PL) studies of gallium-arsenide layers grown by molecular-beam epitaxy at low (200 °C) temperatures (LT GaAs) and doped with silicon or a combination of silicon and indium have been performed. The PL spectra of as-grown samples reveal a shallow acceptor-based line only. After annealing, an additional line at ∼1.2 eV appears, which is attributable to SiGa-VGa complexes. The activation energy of complex formation is found to be close to the activation energy of migration of gallium vacancies and is equal to 1.9±0.3 eV for LT GaAs: Si. It is found that doping with a combination of silicon and indium leads to an increase in the activation energy of formation of SiGa-VGa complexes to 2.5±0.3 eV. We believe that this increase in the activation energy is controlled by the gallium vacancy-indium interaction through local lattice deformations. More... »

PAGES

1080-1083

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1187869

DOI

http://dx.doi.org/10.1134/1.1187869

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007647770


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kunitsyn", 
        "givenName": "A. E.", 
        "id": "sg:person.011601422063.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011601422063.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaldyshev", 
        "givenName": "V. V.", 
        "id": "sg:person.010716755351.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vul\u2019", 
        "givenName": "S. P.", 
        "id": "sg:person.012115107157.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012115107157.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siberian Branch of the Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preobrazhenskii", 
        "givenName": "V. V.", 
        "id": "sg:person.010664106542.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siberian Branch of the Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Putyato", 
        "givenName": "M. A.", 
        "id": "sg:person.015271274417.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siberian Branch of the Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semyagin", 
        "givenName": "B. R.", 
        "id": "sg:person.011644303155.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-0248(92)90614-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049922568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(92)90614-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049922568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.101229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057648813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.107993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057655562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.113911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057666550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.114782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057676124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.119091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057683281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.119814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057684000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057687724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.351200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057965334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.362742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057987873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.366723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057995731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.168.922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060438116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.168.922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060438116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.2798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.2798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804562"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-10", 
    "datePublishedReg": "1999-10-01", 
    "description": "Low-temperature photoluminescence (PL) studies of gallium-arsenide layers grown by molecular-beam epitaxy at low (200 \u00b0C) temperatures (LT GaAs) and doped with silicon or a combination of silicon and indium have been performed. The PL spectra of as-grown samples reveal a shallow acceptor-based line only. After annealing, an additional line at \u223c1.2 eV appears, which is attributable to SiGa-VGa complexes. The activation energy of complex formation is found to be close to the activation energy of migration of gallium vacancies and is equal to 1.9\u00b10.3 eV for LT GaAs: Si. It is found that doping with a combination of silicon and indium leads to an increase in the activation energy of formation of SiGa-VGa complexes to 2.5\u00b10.3 eV. We believe that this increase in the activation energy is controlled by the gallium vacancy-indium interaction through local lattice deformations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.1187869", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Influence of indium doping on the formation of silicon-(gallium vacancy) complexes in gallium arsenide grown by molecular-beam epitaxy at low temperatures", 
    "pagination": "1080-1083", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "246db5e6eaf43f39792bd8e2d66d31c52b19afe3148535940e2c69650cf80d17"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1187869"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007647770"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1187869", 
      "https://app.dimensions.ai/details/publication/pub.1007647770"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.1187869"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1187869'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1187869'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1187869'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1187869'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1187869 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Needf37ef8ce74ebeb9e73050bd52b15d
4 schema:citation https://doi.org/10.1016/0022-0248(92)90614-o
5 https://doi.org/10.1063/1.101229
6 https://doi.org/10.1063/1.107993
7 https://doi.org/10.1063/1.113911
8 https://doi.org/10.1063/1.114782
9 https://doi.org/10.1063/1.119091
10 https://doi.org/10.1063/1.119814
11 https://doi.org/10.1063/1.123576
12 https://doi.org/10.1063/1.351200
13 https://doi.org/10.1063/1.362742
14 https://doi.org/10.1063/1.366723
15 https://doi.org/10.1103/physrev.168.922
16 https://doi.org/10.1103/physrevlett.68.2798
17 schema:datePublished 1999-10
18 schema:datePublishedReg 1999-10-01
19 schema:description Low-temperature photoluminescence (PL) studies of gallium-arsenide layers grown by molecular-beam epitaxy at low (200 °C) temperatures (LT GaAs) and doped with silicon or a combination of silicon and indium have been performed. The PL spectra of as-grown samples reveal a shallow acceptor-based line only. After annealing, an additional line at ∼1.2 eV appears, which is attributable to SiGa-VGa complexes. The activation energy of complex formation is found to be close to the activation energy of migration of gallium vacancies and is equal to 1.9±0.3 eV for LT GaAs: Si. It is found that doping with a combination of silicon and indium leads to an increase in the activation energy of formation of SiGa-VGa complexes to 2.5±0.3 eV. We believe that this increase in the activation energy is controlled by the gallium vacancy-indium interaction through local lattice deformations.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N710750165aeb494880440beebae5a40a
24 Ndeab804d0aba49fd8ea18e4f0e4a0657
25 sg:journal.1136692
26 schema:name Influence of indium doping on the formation of silicon-(gallium vacancy) complexes in gallium arsenide grown by molecular-beam epitaxy at low temperatures
27 schema:pagination 1080-1083
28 schema:productId N3da383c14eb340eaaa669de1f96d53f0
29 N9d0ff35103e04e61a221624b5ee94fdf
30 Ne0986127e3f342529dd8693a6e6efe29
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007647770
32 https://doi.org/10.1134/1.1187869
33 schema:sdDatePublished 2019-04-11T01:04
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N767f355f8ddd4c7d82b75604af803e3f
36 schema:url http://link.springer.com/10.1134/1.1187869
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N315cf821054e425b8f7d52c0e6bfb042 rdf:first sg:person.015271274417.07
41 rdf:rest N99a34006b24b4d1e8f012e865a771390
42 N3da383c14eb340eaaa669de1f96d53f0 schema:name dimensions_id
43 schema:value pub.1007647770
44 rdf:type schema:PropertyValue
45 N416f90f528e34f8fb73d6f1675739121 rdf:first sg:person.010664106542.73
46 rdf:rest N315cf821054e425b8f7d52c0e6bfb042
47 N710750165aeb494880440beebae5a40a schema:volumeNumber 33
48 rdf:type schema:PublicationVolume
49 N767f355f8ddd4c7d82b75604af803e3f schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N958c79f778a54a54a503fc15cc6ad61c rdf:first sg:person.012115107157.17
52 rdf:rest N416f90f528e34f8fb73d6f1675739121
53 N99a34006b24b4d1e8f012e865a771390 rdf:first sg:person.011644303155.87
54 rdf:rest rdf:nil
55 N9d0ff35103e04e61a221624b5ee94fdf schema:name doi
56 schema:value 10.1134/1.1187869
57 rdf:type schema:PropertyValue
58 Ndeab804d0aba49fd8ea18e4f0e4a0657 schema:issueNumber 10
59 rdf:type schema:PublicationIssue
60 Ne0986127e3f342529dd8693a6e6efe29 schema:name readcube_id
61 schema:value 246db5e6eaf43f39792bd8e2d66d31c52b19afe3148535940e2c69650cf80d17
62 rdf:type schema:PropertyValue
63 Needf37ef8ce74ebeb9e73050bd52b15d rdf:first sg:person.011601422063.09
64 rdf:rest Nf79261f8a51e449dab911856c93829b8
65 Nf79261f8a51e449dab911856c93829b8 rdf:first sg:person.010716755351.29
66 rdf:rest N958c79f778a54a54a503fc15cc6ad61c
67 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
68 schema:name Engineering
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
71 schema:name Materials Engineering
72 rdf:type schema:DefinedTerm
73 sg:journal.1136692 schema:issn 1063-7826
74 1090-6479
75 schema:name Semiconductors
76 rdf:type schema:Periodical
77 sg:person.010664106542.73 schema:affiliation https://www.grid.ac/institutes/grid.415877.8
78 schema:familyName Preobrazhenskii
79 schema:givenName V. V.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73
81 rdf:type schema:Person
82 sg:person.010716755351.29 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
83 schema:familyName Chaldyshev
84 schema:givenName V. V.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29
86 rdf:type schema:Person
87 sg:person.011601422063.09 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
88 schema:familyName Kunitsyn
89 schema:givenName A. E.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011601422063.09
91 rdf:type schema:Person
92 sg:person.011644303155.87 schema:affiliation https://www.grid.ac/institutes/grid.415877.8
93 schema:familyName Semyagin
94 schema:givenName B. R.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87
96 rdf:type schema:Person
97 sg:person.012115107157.17 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
98 schema:familyName Vul’
99 schema:givenName S. P.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012115107157.17
101 rdf:type schema:Person
102 sg:person.015271274417.07 schema:affiliation https://www.grid.ac/institutes/grid.415877.8
103 schema:familyName Putyato
104 schema:givenName M. A.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07
106 rdf:type schema:Person
107 https://doi.org/10.1016/0022-0248(92)90614-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1049922568
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1063/1.101229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057648813
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.107993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057655562
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.113911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057666550
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.114782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057676124
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.119091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057683281
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.119814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057684000
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.123576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057687724
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.351200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057965334
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.362742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057987873
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.366723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057995731
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrev.168.922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060438116
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.68.2798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804562
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.415877.8 schema:alternateName Siberian Branch of the Russian Academy of Sciences
134 schema:name Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
137 schema:name A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...