Indium layers in low-temperature gallium arsenide: Structure and how it changes under annealing in the temperature range 500–700 °C View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-07

AUTHORS

N. A. Bert, A. A. Suvorova, V. V. Chaldyshev, Yu. G. Musikhin, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, R. Werner

ABSTRACT

Transmission electron microscopy is used to study the microstructure of indium δ layers in GaAs(001) grown by molecular beam epitaxy at low temperature (200 °C). This material, referred to as LT-GaAs, contains a high concentration (≈1020 cm−3) of point defects. It is established that when the material is δ-doped with indium to levels equivalent to 0.5 or 1 monolayer (ML), the roughness of the growth surface leads to the formation of InAs islands with characteristic lateral dimensions <10 nm, which are distributed primarily within four adjacent atomic layers, i.e., the thickness of the indium-containing layer is 1.12 nm. Subsequent annealing, even at relatively low temperatures, leads to significant broadening of the indium-containing layers due to the interdiffusion of In and Ga, which is enhanced by the presence of a high concentration of point defects, particularly VGa, in LT-GaAs. By measuring the thickness of indium-containing layers annealed at various temperatures, the interdiffusion coefficient is determined to be DIn-Ga=5.1×10−12 exp(−1.08 eV/kT) cm2/s, which is more than an order of magnitude larger than DIn-Ga for stoichiometric GaAs at 700 °C. More... »

PAGES

683-688

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1187483

DOI

http://dx.doi.org/10.1134/1.1187483

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032539066


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "A. I. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bert", 
        "givenName": "N. A.", 
        "id": "sg:person.010314101551.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314101551.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "A. I. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suvorova", 
        "givenName": "A. A.", 
        "id": "sg:person.0657051667.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657051667.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "A. I. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaldyshev", 
        "givenName": "V. V.", 
        "id": "sg:person.010716755351.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics", 
          "id": "https://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "A. I. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
            "Max Planck Institut f\u00fcr Mikrostrukturphysik, D-5120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Musikhin", 
        "givenName": "Yu. G.", 
        "id": "sg:person.014603755431.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603755431.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preobrazhenskii", 
        "givenName": "V. V.", 
        "id": "sg:person.010664106542.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Putyato", 
        "givenName": "M. A.", 
        "id": "sg:person.015271274417.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semyagin", 
        "givenName": "B. R.", 
        "id": "sg:person.011644303155.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics", 
          "id": "https://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "Max Planck Institut f\u00fcr Mikrostrukturphysik, D-5120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Werner", 
        "givenName": "R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0584-8547(85)80136-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013616387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0584-8547(85)80136-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013616387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/12/1/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021616020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(89)90187-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047973866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(89)90187-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047973866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.101358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057648940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.108210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057655779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.114385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057671760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.114782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057676124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.115257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057679482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.117936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057682141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.119791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057683977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.119814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057684000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.350376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057963885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.362742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057987873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.2798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.2798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/55.2046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061187636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.584630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062194677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/ddf.143-147.1079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072049904"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-07", 
    "datePublishedReg": "1998-07-01", 
    "description": "Transmission electron microscopy is used to study the microstructure of indium \u03b4 layers in GaAs(001) grown by molecular beam epitaxy at low temperature (200 \u00b0C). This material, referred to as LT-GaAs, contains a high concentration (\u22481020 cm\u22123) of point defects. It is established that when the material is \u03b4-doped with indium to levels equivalent to 0.5 or 1 monolayer (ML), the roughness of the growth surface leads to the formation of InAs islands with characteristic lateral dimensions <10 nm, which are distributed primarily within four adjacent atomic layers, i.e., the thickness of the indium-containing layer is 1.12 nm. Subsequent annealing, even at relatively low temperatures, leads to significant broadening of the indium-containing layers due to the interdiffusion of In and Ga, which is enhanced by the presence of a high concentration of point defects, particularly VGa, in LT-GaAs. By measuring the thickness of indium-containing layers annealed at various temperatures, the interdiffusion coefficient is determined to be DIn-Ga=5.1\u00d710\u221212 exp(\u22121.08 eV/kT) cm2/s, which is more than an order of magnitude larger than DIn-Ga for stoichiometric GaAs at 700 \u00b0C.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.1187483", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Indium layers in low-temperature gallium arsenide: Structure and how it changes under annealing in the temperature range 500\u2013700 \u00b0C", 
    "pagination": "683-688", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9b030e85e099e79cf8ea20612b8d963948ffa8f4a286f2d20718cc889d69166c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1187483"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032539066"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1187483", 
      "https://app.dimensions.ai/details/publication/pub.1032539066"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.1187483"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1187483'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1187483'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1187483'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1187483'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1187483 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb14225a3ca8b4e4fab37eff08d7527e9
4 schema:citation https://doi.org/10.1016/0022-0248(89)90187-5
5 https://doi.org/10.1016/0584-8547(85)80136-1
6 https://doi.org/10.1063/1.101358
7 https://doi.org/10.1063/1.108210
8 https://doi.org/10.1063/1.114385
9 https://doi.org/10.1063/1.114782
10 https://doi.org/10.1063/1.115257
11 https://doi.org/10.1063/1.117936
12 https://doi.org/10.1063/1.119791
13 https://doi.org/10.1063/1.119814
14 https://doi.org/10.1063/1.350376
15 https://doi.org/10.1063/1.362742
16 https://doi.org/10.1088/0268-1242/12/1/010
17 https://doi.org/10.1103/physrevlett.63.636
18 https://doi.org/10.1103/physrevlett.68.2798
19 https://doi.org/10.1109/55.2046
20 https://doi.org/10.1116/1.584630
21 https://doi.org/10.4028/www.scientific.net/ddf.143-147.1079
22 schema:datePublished 1998-07
23 schema:datePublishedReg 1998-07-01
24 schema:description Transmission electron microscopy is used to study the microstructure of indium δ layers in GaAs(001) grown by molecular beam epitaxy at low temperature (200 °C). This material, referred to as LT-GaAs, contains a high concentration (≈1020 cm−3) of point defects. It is established that when the material is δ-doped with indium to levels equivalent to 0.5 or 1 monolayer (ML), the roughness of the growth surface leads to the formation of InAs islands with characteristic lateral dimensions <10 nm, which are distributed primarily within four adjacent atomic layers, i.e., the thickness of the indium-containing layer is 1.12 nm. Subsequent annealing, even at relatively low temperatures, leads to significant broadening of the indium-containing layers due to the interdiffusion of In and Ga, which is enhanced by the presence of a high concentration of point defects, particularly VGa, in LT-GaAs. By measuring the thickness of indium-containing layers annealed at various temperatures, the interdiffusion coefficient is determined to be DIn-Ga=5.1×10−12 exp(−1.08 eV/kT) cm2/s, which is more than an order of magnitude larger than DIn-Ga for stoichiometric GaAs at 700 °C.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N42c411e275434f079cc2b4cdfbd04947
29 N730b12ef6c9640a2983c9e5fec1145b1
30 sg:journal.1136692
31 schema:name Indium layers in low-temperature gallium arsenide: Structure and how it changes under annealing in the temperature range 500–700 °C
32 schema:pagination 683-688
33 schema:productId N2384fa9a3e914266859f09bece59d41c
34 N4afa81be7c554dd2a216ecb79078308a
35 Nfbf821d609b0439fbc0b34df8d8b0902
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032539066
37 https://doi.org/10.1134/1.1187483
38 schema:sdDatePublished 2019-04-11T00:13
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N9b2bbc970a874fc9be36cc14b03bb8e1
41 schema:url http://link.springer.com/10.1134/1.1187483
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N015763e836a547b98c8e34f8191e1734 rdf:first sg:person.014603755431.88
46 rdf:rest N1e8412bfe34d4558a57044732f70dff0
47 N1e8412bfe34d4558a57044732f70dff0 rdf:first sg:person.010664106542.73
48 rdf:rest N530fef9e52bf46e8865e687140f21a65
49 N2384fa9a3e914266859f09bece59d41c schema:name dimensions_id
50 schema:value pub.1032539066
51 rdf:type schema:PropertyValue
52 N42c411e275434f079cc2b4cdfbd04947 schema:issueNumber 7
53 rdf:type schema:PublicationIssue
54 N4afa81be7c554dd2a216ecb79078308a schema:name doi
55 schema:value 10.1134/1.1187483
56 rdf:type schema:PropertyValue
57 N530fef9e52bf46e8865e687140f21a65 rdf:first sg:person.015271274417.07
58 rdf:rest N9aeaff80cb404f4fa6053425e1d04ee6
59 N629dd0a15eb24313a0363ff0a8d30ce0 rdf:first sg:person.010716755351.29
60 rdf:rest N015763e836a547b98c8e34f8191e1734
61 N730b12ef6c9640a2983c9e5fec1145b1 schema:volumeNumber 32
62 rdf:type schema:PublicationVolume
63 N788bf710f694498cafa251cc7505e032 rdf:first sg:person.0657051667.28
64 rdf:rest N629dd0a15eb24313a0363ff0a8d30ce0
65 N94c6f16eac2245d9bc1a1d45836db887 schema:affiliation https://www.grid.ac/institutes/grid.450270.4
66 schema:familyName Werner
67 schema:givenName R.
68 rdf:type schema:Person
69 N9aeaff80cb404f4fa6053425e1d04ee6 rdf:first sg:person.011644303155.87
70 rdf:rest Ne111624217e14b43a077733ac395d77b
71 N9b2bbc970a874fc9be36cc14b03bb8e1 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nb14225a3ca8b4e4fab37eff08d7527e9 rdf:first sg:person.010314101551.02
74 rdf:rest N788bf710f694498cafa251cc7505e032
75 Ne111624217e14b43a077733ac395d77b rdf:first N94c6f16eac2245d9bc1a1d45836db887
76 rdf:rest rdf:nil
77 Nfbf821d609b0439fbc0b34df8d8b0902 schema:name readcube_id
78 schema:value 9b030e85e099e79cf8ea20612b8d963948ffa8f4a286f2d20718cc889d69166c
79 rdf:type schema:PropertyValue
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
84 schema:name Materials Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1136692 schema:issn 1063-7826
87 1090-6479
88 schema:name Semiconductors
89 rdf:type schema:Periodical
90 sg:person.010314101551.02 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
91 schema:familyName Bert
92 schema:givenName N. A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314101551.02
94 rdf:type schema:Person
95 sg:person.010664106542.73 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
96 schema:familyName Preobrazhenskii
97 schema:givenName V. V.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73
99 rdf:type schema:Person
100 sg:person.010716755351.29 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
101 schema:familyName Chaldyshev
102 schema:givenName V. V.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29
104 rdf:type schema:Person
105 sg:person.011644303155.87 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
106 schema:familyName Semyagin
107 schema:givenName B. R.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87
109 rdf:type schema:Person
110 sg:person.014603755431.88 schema:affiliation https://www.grid.ac/institutes/grid.450270.4
111 schema:familyName Musikhin
112 schema:givenName Yu. G.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603755431.88
114 rdf:type schema:Person
115 sg:person.015271274417.07 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
116 schema:familyName Putyato
117 schema:givenName M. A.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07
119 rdf:type schema:Person
120 sg:person.0657051667.28 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
121 schema:familyName Suvorova
122 schema:givenName A. A.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657051667.28
124 rdf:type schema:Person
125 https://doi.org/10.1016/0022-0248(89)90187-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047973866
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0584-8547(85)80136-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013616387
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.101358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057648940
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.108210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057655779
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.114385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057671760
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.114782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057676124
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.115257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057679482
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.117936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057682141
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.119791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057683977
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.119814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057684000
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.350376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057963885
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.362742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057987873
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1088/0268-1242/12/1/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021616020
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.63.636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799997
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.68.2798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804562
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/55.2046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061187636
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1116/1.584630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062194677
158 rdf:type schema:CreativeWork
159 https://doi.org/10.4028/www.scientific.net/ddf.143-147.1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072049904
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
162 schema:name A. I. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.450270.4 schema:alternateName Max Planck Institute of Microstructure Physics
165 schema:name A. I. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
166 Max Planck Institut für Mikrostrukturphysik, D-5120, Halle, Germany
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.450314.7 schema:alternateName Institute of Semiconductor Physics
169 schema:name Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090, Novosibirsk, Russia
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...