A lattice model of nearest-neighbor hopping conduction and its application to neutron-doped Ge: Ga View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-03

AUTHORS

N. A. Poklonskii, S. Yu. Lopatin, A. G. Zabrodskii

ABSTRACT

A model of hopping conduction between nearest neighbors is developed in which the majority and compensating dopant atoms are assumed to form a unified simple cubic lattice in a crystalline matrix. The hopping of carriers occurs when thermally activated “equalization” of majority impurity levels takes place, while the compensating impurities block the corresponding sites. The range of relatively high temperatures is considered in which the interactions giving rise to a Coulomb gap can be neglected and the density of states of the majority impurity band is Gaussian. The concentration dependences of the activation energy for hopping conductivity ɛ3 (nonmonotonic and having a maximum) and the preexponential factor σ3 are found. The results are compared with experimental data obtained by different authors for neutron-doped Ge: Ga. More... »

PAGES

441-449

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1131228

DOI

http://dx.doi.org/10.1134/1.1131228

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037188522


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Classical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Belarussian State University, Leningradskaya ul. 14, 220080, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Belarussian State University, Leningradskaya ul. 14, 220080, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poklonskii", 
        "givenName": "N. A.", 
        "id": "sg:person.015656403561.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015656403561.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belarussian State University, Leningradskaya ul. 14, 220080, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Belarussian State University, Leningradskaya ul. 14, 220080, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lopatin", 
        "givenName": "S. Yu.", 
        "id": "sg:person.014315412577.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014315412577.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zabrodskii", 
        "givenName": "A. G.", 
        "id": "sg:person.016623532707.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-02403-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047888670", 
          "https://doi.org/10.1007/978-3-662-02403-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01351525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014554081", 
          "https://doi.org/10.1007/bf01351525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00114337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051277718", 
          "https://doi.org/10.1007/bf00114337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-5703-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716639", 
          "https://doi.org/10.1007/978-94-009-5703-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-03", 
    "datePublishedReg": "2000-03-01", 
    "description": "A model of hopping conduction between nearest neighbors is developed in which the majority and compensating dopant atoms are assumed to form a unified simple cubic lattice in a crystalline matrix. The hopping of carriers occurs when thermally activated \u201cequalization\u201d of majority impurity levels takes place, while the compensating impurities block the corresponding sites. The range of relatively high temperatures is considered in which the interactions giving rise to a Coulomb gap can be neglected and the density of states of the majority impurity band is Gaussian. The concentration dependences of the activation energy for hopping conductivity \u025b3 (nonmonotonic and having a maximum) and the preexponential factor \u03c33 are found. The results are compared with experimental data obtained by different authors for neutron-doped Ge: Ga.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/1.1131228", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "keywords": [
      "high temperature", 
      "experimental data", 
      "impurity levels", 
      "conduction", 
      "activation energy", 
      "dopant atoms", 
      "Ge", 
      "crystalline matrix", 
      "hopping of carriers", 
      "conductivity", 
      "gas", 
      "impurity band", 
      "temperature", 
      "density of states", 
      "concentration dependence", 
      "cubic lattice", 
      "impurities", 
      "\u03c33", 
      "model", 
      "Coulomb gap", 
      "energy", 
      "lattice model", 
      "matrix", 
      "density", 
      "applications", 
      "carriers", 
      "equalization", 
      "simple cubic lattice", 
      "range", 
      "dependence", 
      "hopping", 
      "gap", 
      "lattice", 
      "band", 
      "results", 
      "Gaussian", 
      "different authors", 
      "nearest neighbors", 
      "rise", 
      "place", 
      "interaction", 
      "state", 
      "data", 
      "atoms", 
      "authors", 
      "sites", 
      "levels", 
      "neighbors", 
      "Ga.", 
      "corresponding sites", 
      "majority", 
      "unified simple cubic lattice", 
      "majority impurity levels", 
      "majority impurity band", 
      "preexponential factor \u03c33", 
      "factor \u03c33", 
      "neutron-doped Ge"
    ], 
    "name": "A lattice model of nearest-neighbor hopping conduction and its application to neutron-doped Ge: Ga", 
    "pagination": "441-449", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037188522"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1131228"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1131228", 
      "https://app.dimensions.ai/details/publication/pub.1037188522"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_316.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/1.1131228"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1131228'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1131228'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1131228'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1131228'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      22 PREDICATES      89 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1131228 schema:about anzsrc-for:02
2 anzsrc-for:0203
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author N364dd4233d864fd5acd8c2ec12a8481e
6 schema:citation sg:pub.10.1007/978-3-662-02403-4
7 sg:pub.10.1007/978-94-009-5703-9
8 sg:pub.10.1007/bf00114337
9 sg:pub.10.1007/bf01351525
10 schema:datePublished 2000-03
11 schema:datePublishedReg 2000-03-01
12 schema:description A model of hopping conduction between nearest neighbors is developed in which the majority and compensating dopant atoms are assumed to form a unified simple cubic lattice in a crystalline matrix. The hopping of carriers occurs when thermally activated “equalization” of majority impurity levels takes place, while the compensating impurities block the corresponding sites. The range of relatively high temperatures is considered in which the interactions giving rise to a Coulomb gap can be neglected and the density of states of the majority impurity band is Gaussian. The concentration dependences of the activation energy for hopping conductivity ɛ3 (nonmonotonic and having a maximum) and the preexponential factor σ3 are found. The results are compared with experimental data obtained by different authors for neutron-doped Ge: Ga.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N542ba3e003274ff5844cbdda6670f4b1
17 N8f605046ee124ef3abfd7ac82c8e5faf
18 sg:journal.1136591
19 schema:keywords Coulomb gap
20 Ga.
21 Gaussian
22 Ge
23 activation energy
24 applications
25 atoms
26 authors
27 band
28 carriers
29 concentration dependence
30 conduction
31 conductivity
32 corresponding sites
33 crystalline matrix
34 cubic lattice
35 data
36 density
37 density of states
38 dependence
39 different authors
40 dopant atoms
41 energy
42 equalization
43 experimental data
44 factor σ3
45 gap
46 gas
47 high temperature
48 hopping
49 hopping of carriers
50 impurities
51 impurity band
52 impurity levels
53 interaction
54 lattice
55 lattice model
56 levels
57 majority
58 majority impurity band
59 majority impurity levels
60 matrix
61 model
62 nearest neighbors
63 neighbors
64 neutron-doped Ge
65 place
66 preexponential factor σ3
67 range
68 results
69 rise
70 simple cubic lattice
71 sites
72 state
73 temperature
74 unified simple cubic lattice
75 σ3
76 schema:name A lattice model of nearest-neighbor hopping conduction and its application to neutron-doped Ge: Ga
77 schema:pagination 441-449
78 schema:productId N2cb4cb8acdf7401ebcfd8de0a6254644
79 Nc66ee9c3004446ffa253bf3fc6b606e0
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037188522
81 https://doi.org/10.1134/1.1131228
82 schema:sdDatePublished 2021-12-01T19:11
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N67e3c17183464f018775164fe8a34d5f
85 schema:url https://doi.org/10.1134/1.1131228
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N2cb4cb8acdf7401ebcfd8de0a6254644 schema:name dimensions_id
90 schema:value pub.1037188522
91 rdf:type schema:PropertyValue
92 N364dd4233d864fd5acd8c2ec12a8481e rdf:first sg:person.015656403561.19
93 rdf:rest N4f71bb9aed3e41a99463ba2fb10c3c9b
94 N4f71bb9aed3e41a99463ba2fb10c3c9b rdf:first sg:person.014315412577.53
95 rdf:rest Nb7cddb879f744da38bac2dda8d864c6c
96 N542ba3e003274ff5844cbdda6670f4b1 schema:volumeNumber 42
97 rdf:type schema:PublicationVolume
98 N67e3c17183464f018775164fe8a34d5f schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N8f605046ee124ef3abfd7ac82c8e5faf schema:issueNumber 3
101 rdf:type schema:PublicationIssue
102 Nb7cddb879f744da38bac2dda8d864c6c rdf:first sg:person.016623532707.36
103 rdf:rest rdf:nil
104 Nc66ee9c3004446ffa253bf3fc6b606e0 schema:name doi
105 schema:value 10.1134/1.1131228
106 rdf:type schema:PropertyValue
107 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
108 schema:name Physical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
111 schema:name Classical Physics
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
114 schema:name Condensed Matter Physics
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
117 schema:name Quantum Physics
118 rdf:type schema:DefinedTerm
119 sg:journal.1136591 schema:issn 0367-3294
120 1063-7834
121 schema:name Physics of the Solid State
122 schema:publisher Pleiades Publishing
123 rdf:type schema:Periodical
124 sg:person.014315412577.53 schema:affiliation grid-institutes:grid.17678.3f
125 schema:familyName Lopatin
126 schema:givenName S. Yu.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014315412577.53
128 rdf:type schema:Person
129 sg:person.015656403561.19 schema:affiliation grid-institutes:grid.17678.3f
130 schema:familyName Poklonskii
131 schema:givenName N. A.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015656403561.19
133 rdf:type schema:Person
134 sg:person.016623532707.36 schema:affiliation grid-institutes:grid.423485.c
135 schema:familyName Zabrodskii
136 schema:givenName A. G.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36
138 rdf:type schema:Person
139 sg:pub.10.1007/978-3-662-02403-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047888670
140 https://doi.org/10.1007/978-3-662-02403-4
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/978-94-009-5703-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716639
143 https://doi.org/10.1007/978-94-009-5703-9
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf00114337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051277718
146 https://doi.org/10.1007/bf00114337
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/bf01351525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014554081
149 https://doi.org/10.1007/bf01351525
150 rdf:type schema:CreativeWork
151 grid-institutes:grid.17678.3f schema:alternateName Belarussian State University, Leningradskaya ul. 14, 220080, Minsk, Belarus
152 schema:name Belarussian State University, Leningradskaya ul. 14, 220080, Minsk, Belarus
153 rdf:type schema:Organization
154 grid-institutes:grid.423485.c schema:alternateName Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
155 schema:name Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...