Sensitivity Analysis for Evaluating Nonlinear Models of Lung Mechanics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-03

AUTHORS

Huichin Yuan, Béla Suki, Kenneth R. Lutchen

ABSTRACT

We present a combined theoretical and numerical procedure for sensitivity analyses of lung mechanics models that are nonlinear in both state variables and parameters. We apply the analyses to a recently proposed nonlinear lung model which incorporates a wide range of potential nonlinear identification conditions including nonlinear viscoelastic tissues, airway inhomogeneities via a parallel airway resistance distribution function, and a nonlinear block-structure paradigm. Additionally, we examine a system identification procedure which fits time- and frequency-domain data simultaneously. Model nonlinearities motivate sensitivity analyses involving numerical approximation of sensitivity coefficients. Examination of the normalized sensitivity coefficients provides direct insight on the relative importance of each model parameter, and hence the respective mechanism. More formal quantification of parameter uniqueness requires approximation of the paired and multidimensional parameter confidence regions. Combined with parameter estimation, we use the sensitivity analyses to justify tissue nonlinearities in modeling of lung mechanics for healthy and airway constricted conditions, and to justify both airway inhomogeneities and tissue nonlinearities during bronchoconstriction. The tools in this paper are general and can be applied to a wide class of nonlinear models. More... »

PAGES

230-241

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1114/1.117

DOI

http://dx.doi.org/10.1114/1.117

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004042756

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9525763


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Airway Resistance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evaluation Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory Mechanics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Biomedical Engineering Department, Boston University, Boston, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Huichin", 
        "id": "sg:person.0671023215.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671023215.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Biomedical Engineering Department, Boston University, Boston, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suki", 
        "givenName": "B\u00e9la", 
        "id": "sg:person.0730323706.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Biomedical Engineering Department, Boston University, Boston, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lutchen", 
        "givenName": "Kenneth R.", 
        "id": "sg:person.011222222577.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011222222577.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02518912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048209542", 
          "https://doi.org/10.1007/bf02518912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02518912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048209542", 
          "https://doi.org/10.1007/bf02518912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.108133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061083848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.141203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.168693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.1984.325293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061525077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.1986.325866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061525475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.73.2.427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076180284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.73.3.1040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076180685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.73.6.2681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076751767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.72.1.168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076894305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1992.72.1.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076894479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1991.71.3.1159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077432590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1991.70.6.2432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077738577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1970.28.3.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081064750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1995.79.2.660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082426798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1994.77.1.373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082583818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1995.79.3.771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082862144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1996.80.5.1637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082928455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1996.80.5.1841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082928480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1997.82.4.1349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083073076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1997.83.4.1192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083161735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.1988.94943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086237503"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-03", 
    "datePublishedReg": "1998-03-01", 
    "description": "We present a combined theoretical and numerical procedure for sensitivity analyses of lung mechanics models that are nonlinear in both state variables and parameters. We apply the analyses to a recently proposed nonlinear lung model which incorporates a wide range of potential nonlinear identification conditions including nonlinear viscoelastic tissues, airway inhomogeneities via a parallel airway resistance distribution function, and a nonlinear block-structure paradigm. Additionally, we examine a system identification procedure which fits time- and frequency-domain data simultaneously. Model nonlinearities motivate sensitivity analyses involving numerical approximation of sensitivity coefficients. Examination of the normalized sensitivity coefficients provides direct insight on the relative importance of each model parameter, and hence the respective mechanism. More formal quantification of parameter uniqueness requires approximation of the paired and multidimensional parameter confidence regions. Combined with parameter estimation, we use the sensitivity analyses to justify tissue nonlinearities in modeling of lung mechanics for healthy and airway constricted conditions, and to justify both airway inhomogeneities and tissue nonlinearities during bronchoconstriction. The tools in this paper are general and can be applied to a wide class of nonlinear models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1114/1.117", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087247", 
        "issn": [
          "0145-3068", 
          "1573-9686"
        ], 
        "name": "Annals of Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Sensitivity Analysis for Evaluating Nonlinear Models of Lung Mechanics", 
    "pagination": "230-241", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1343321a01df6f40730f56ef73412df3dfddba16fb860e8c89c6b1a6a06b9ed0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9525763"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0361512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1114/1.117"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004042756"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1114/1.117", 
      "https://app.dimensions.ai/details/publication/pub.1004042756"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1114/1.117"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1114/1.117'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1114/1.117'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1114/1.117'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1114/1.117'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      64 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1114/1.117 schema:about N0deb2cf5c18d4f0b85f0307e011d4047
2 N1025845c3f7b4b81b0830e95291c186d
3 N135ab333de4b49a7816e911c1088eba4
4 N49026fa209e84412b7bfea0da7fe41c4
5 N534868b86c3349b7827571ad4df3e40c
6 N60dfbcf96e2c4b7fab61d61bf344d37d
7 N60ec911133004e3ca79cad4cea8c54c9
8 N6c823d3b08f84bb894b494619639ed12
9 Na6907a800f80466db336528a188e68aa
10 Nca8b2a94fbb04b8f81b31672e091f7cd
11 Ne0c89964d06d4a15880867aa0339afc1
12 Nec4ccaf73f2249f497227d459810983d
13 Ned95bf5ed6db4a37a6e159d8c4e26312
14 anzsrc-for:01
15 anzsrc-for:0102
16 schema:author Ndc8afb67f09a435d8d623288a0e6fcbb
17 schema:citation sg:pub.10.1007/bf02518912
18 https://doi.org/10.1109/10.108133
19 https://doi.org/10.1109/10.141203
20 https://doi.org/10.1109/10.168693
21 https://doi.org/10.1109/iembs.1988.94943
22 https://doi.org/10.1109/tbme.1984.325293
23 https://doi.org/10.1109/tbme.1986.325866
24 https://doi.org/10.1152/jappl.1970.28.3.365
25 https://doi.org/10.1152/jappl.1991.70.6.2432
26 https://doi.org/10.1152/jappl.1991.71.3.1159
27 https://doi.org/10.1152/jappl.1992.72.1.168
28 https://doi.org/10.1152/jappl.1992.72.1.87
29 https://doi.org/10.1152/jappl.1992.73.2.427
30 https://doi.org/10.1152/jappl.1992.73.3.1040
31 https://doi.org/10.1152/jappl.1992.73.6.2681
32 https://doi.org/10.1152/jappl.1994.77.1.373
33 https://doi.org/10.1152/jappl.1995.79.2.660
34 https://doi.org/10.1152/jappl.1995.79.3.771
35 https://doi.org/10.1152/jappl.1996.80.5.1637
36 https://doi.org/10.1152/jappl.1996.80.5.1841
37 https://doi.org/10.1152/jappl.1997.82.4.1349
38 https://doi.org/10.1152/jappl.1997.83.4.1192
39 schema:datePublished 1998-03
40 schema:datePublishedReg 1998-03-01
41 schema:description We present a combined theoretical and numerical procedure for sensitivity analyses of lung mechanics models that are nonlinear in both state variables and parameters. We apply the analyses to a recently proposed nonlinear lung model which incorporates a wide range of potential nonlinear identification conditions including nonlinear viscoelastic tissues, airway inhomogeneities via a parallel airway resistance distribution function, and a nonlinear block-structure paradigm. Additionally, we examine a system identification procedure which fits time- and frequency-domain data simultaneously. Model nonlinearities motivate sensitivity analyses involving numerical approximation of sensitivity coefficients. Examination of the normalized sensitivity coefficients provides direct insight on the relative importance of each model parameter, and hence the respective mechanism. More formal quantification of parameter uniqueness requires approximation of the paired and multidimensional parameter confidence regions. Combined with parameter estimation, we use the sensitivity analyses to justify tissue nonlinearities in modeling of lung mechanics for healthy and airway constricted conditions, and to justify both airway inhomogeneities and tissue nonlinearities during bronchoconstriction. The tools in this paper are general and can be applied to a wide class of nonlinear models.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N096621e4878b42d2bad39a8c70ca3d52
46 N3b27ee50f6a14368a608d0acea4dbe56
47 sg:journal.1087247
48 schema:name Sensitivity Analysis for Evaluating Nonlinear Models of Lung Mechanics
49 schema:pagination 230-241
50 schema:productId N2aa03698b03e4d42a483636ed40d0228
51 N64117e3ff09f4b68bb961f15c95e8fd8
52 N81ab31883a5e4506a218edf487a1e593
53 Naa0320337a104fe88c604c9df5f59b78
54 Nf44ad600311a4668ba4c4bc5d245b2e2
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004042756
56 https://doi.org/10.1114/1.117
57 schema:sdDatePublished 2019-04-11T00:13
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N2be8b013548a4ba2a1fe1e91829cd70e
60 schema:url http://link.springer.com/10.1114/1.117
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N096621e4878b42d2bad39a8c70ca3d52 schema:issueNumber 2
65 rdf:type schema:PublicationIssue
66 N0deb2cf5c18d4f0b85f0307e011d4047 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Reproducibility of Results
68 rdf:type schema:DefinedTerm
69 N1025845c3f7b4b81b0830e95291c186d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Nonlinear Dynamics
71 rdf:type schema:DefinedTerm
72 N135ab333de4b49a7816e911c1088eba4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Elasticity
74 rdf:type schema:DefinedTerm
75 N2aa03698b03e4d42a483636ed40d0228 schema:name nlm_unique_id
76 schema:value 0361512
77 rdf:type schema:PropertyValue
78 N2be8b013548a4ba2a1fe1e91829cd70e schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N37f7e03235a147c6968d69b42260e938 rdf:first sg:person.011222222577.85
81 rdf:rest rdf:nil
82 N3b27ee50f6a14368a608d0acea4dbe56 schema:volumeNumber 26
83 rdf:type schema:PublicationVolume
84 N49026fa209e84412b7bfea0da7fe41c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Evaluation Studies as Topic
86 rdf:type schema:DefinedTerm
87 N534868b86c3349b7827571ad4df3e40c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Airway Resistance
89 rdf:type schema:DefinedTerm
90 N60dfbcf96e2c4b7fab61d61bf344d37d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Sensitivity and Specificity
92 rdf:type schema:DefinedTerm
93 N60ec911133004e3ca79cad4cea8c54c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Respiratory Mechanics
95 rdf:type schema:DefinedTerm
96 N64117e3ff09f4b68bb961f15c95e8fd8 schema:name dimensions_id
97 schema:value pub.1004042756
98 rdf:type schema:PropertyValue
99 N6c823d3b08f84bb894b494619639ed12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Biomedical Engineering
101 rdf:type schema:DefinedTerm
102 N81ab31883a5e4506a218edf487a1e593 schema:name pubmed_id
103 schema:value 9525763
104 rdf:type schema:PropertyValue
105 N8f560682e6da421eb2ab2c28c447c4e2 rdf:first sg:person.0730323706.34
106 rdf:rest N37f7e03235a147c6968d69b42260e938
107 Na6907a800f80466db336528a188e68aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Animals
109 rdf:type schema:DefinedTerm
110 Naa0320337a104fe88c604c9df5f59b78 schema:name readcube_id
111 schema:value 1343321a01df6f40730f56ef73412df3dfddba16fb860e8c89c6b1a6a06b9ed0
112 rdf:type schema:PropertyValue
113 Nca8b2a94fbb04b8f81b31672e091f7cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Lung
115 rdf:type schema:DefinedTerm
116 Ndc8afb67f09a435d8d623288a0e6fcbb rdf:first sg:person.0671023215.13
117 rdf:rest N8f560682e6da421eb2ab2c28c447c4e2
118 Ne0c89964d06d4a15880867aa0339afc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Humans
120 rdf:type schema:DefinedTerm
121 Nec4ccaf73f2249f497227d459810983d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Models, Biological
123 rdf:type schema:DefinedTerm
124 Ned95bf5ed6db4a37a6e159d8c4e26312 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Mathematics
126 rdf:type schema:DefinedTerm
127 Nf44ad600311a4668ba4c4bc5d245b2e2 schema:name doi
128 schema:value 10.1114/1.117
129 rdf:type schema:PropertyValue
130 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
131 schema:name Mathematical Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
134 schema:name Applied Mathematics
135 rdf:type schema:DefinedTerm
136 sg:journal.1087247 schema:issn 0145-3068
137 1573-9686
138 schema:name Annals of Biomedical Engineering
139 rdf:type schema:Periodical
140 sg:person.011222222577.85 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
141 schema:familyName Lutchen
142 schema:givenName Kenneth R.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011222222577.85
144 rdf:type schema:Person
145 sg:person.0671023215.13 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
146 schema:familyName Yuan
147 schema:givenName Huichin
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671023215.13
149 rdf:type schema:Person
150 sg:person.0730323706.34 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
151 schema:familyName Suki
152 schema:givenName Béla
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730323706.34
154 rdf:type schema:Person
155 sg:pub.10.1007/bf02518912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048209542
156 https://doi.org/10.1007/bf02518912
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/10.108133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061083848
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/10.141203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084018
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/10.168693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084098
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/iembs.1988.94943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086237503
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tbme.1984.325293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525077
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tbme.1986.325866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525475
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1152/jappl.1970.28.3.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081064750
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1152/jappl.1991.70.6.2432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077738577
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1152/jappl.1991.71.3.1159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077432590
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1152/jappl.1992.72.1.168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076894305
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1152/jappl.1992.72.1.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076894479
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1152/jappl.1992.73.2.427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076180284
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1152/jappl.1992.73.3.1040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076180685
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1152/jappl.1992.73.6.2681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076751767
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1152/jappl.1994.77.1.373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082583818
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1152/jappl.1995.79.2.660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082426798
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1152/jappl.1995.79.3.771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082862144
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1152/jappl.1996.80.5.1637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082928455
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1152/jappl.1996.80.5.1841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082928480
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1152/jappl.1997.82.4.1349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083073076
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1152/jappl.1997.83.4.1192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083161735
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
201 schema:name Biomedical Engineering Department, Boston University, Boston, MA
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...