An experimental approach to enhance Cu wire bonding yield through parameter optimization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05

AUTHORS

C. -T. Su, C. -J. Yeh, C. -J. Chou, A. Alec Chang

ABSTRACT

Gold (Au) wire is the preferred material for wire bonding in the semiconductor industry. However, the rising price of Au has become a key issue in IC assembly and design. To stay competitive, costs must be reduced. Copper (Cu) wire can also be used in wire bonding. Cu wire is cheaper than Au wire. To obtain the best yield of wire bonding and to reduce cost, this study develops an experimental approach by utilizing neural networks to establish the functional relationship between control factors and responses and then applying genetic algorithms to obtain the optimal control factor settings of the Cu wire bonding process. Using the developed approach for Cu wire bonding parameter design, the production yield increased from 98.5 to 99.65%, resulting in approximately USD 1.16 million in savings. More... »

PAGES

29-36

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1111/j.1747-1567.2011.00799.x

DOI

http://dx.doi.org/10.1111/j.1747-1567.2011.00799.x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045937893


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "C. -T.", 
        "id": "sg:person.016137101441.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137101441.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ThaiLin Semiconductor Corp., Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeh", 
        "givenName": "C. -J.", 
        "id": "sg:person.014243147104.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014243147104.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Taiwan Semiconductor Manufacturing Company (Taiwan)", 
          "id": "https://www.grid.ac/institutes/grid.454156.7", 
          "name": [
            "Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chou", 
        "givenName": "C. -J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Missouri", 
          "id": "https://www.grid.ac/institutes/grid.134936.a", 
          "name": [
            "Department of Industrial & Manufacturing Systems Engineering, University of Missouri, Columbia, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "A. Alec", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00207540802178109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001224183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0924-0136(92)90425-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001980377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0924-0136(92)90425-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001980377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0952-1976(00)00021-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002133168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207543.2011.574499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006630996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.microrel.2010.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007512575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022959631926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009401153", 
          "https://doi.org/10.1023/a:1022959631926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2006.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014571161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0960-1317/15/12/022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015321513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0960-1317/15/12/022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015321513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.jors.2601888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017711318", 
          "https://doi.org/10.1057/palgrave.jors.2601888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.jors.2601888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017711318", 
          "https://doi.org/10.1057/palgrave.jors.2601888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1024954485", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0577-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024954485", 
          "https://doi.org/10.1007/978-1-4471-0577-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0577-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024954485", 
          "https://doi.org/10.1007/978-1-4471-0577-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0020772031000115605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041702851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(90)90005-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042519969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(90)90005-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042519969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-0548(96)00077-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043540840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/095372898234370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045197653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-3615(02)00140-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048380999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-3615(02)00140-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048380999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207540600905620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053577947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470258354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00224065.1996.11979684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101150091"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05", 
    "datePublishedReg": "2014-05-01", 
    "description": "Gold (Au) wire is the preferred material for wire bonding in the semiconductor industry. However, the rising price of Au has become a key issue in IC assembly and design. To stay competitive, costs must be reduced. Copper (Cu) wire can also be used in wire bonding. Cu wire is cheaper than Au wire. To obtain the best yield of wire bonding and to reduce cost, this study develops an experimental approach by utilizing neural networks to establish the functional relationship between control factors and responses and then applying genetic algorithms to obtain the optimal control factor settings of the Cu wire bonding process. Using the developed approach for Cu wire bonding parameter design, the production yield increased from 98.5 to 99.65%, resulting in approximately USD 1.16 million in savings.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1111/j.1747-1567.2011.00799.x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1137303", 
        "issn": [
          "0732-8818", 
          "1747-1567"
        ], 
        "name": "Experimental Techniques", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "An experimental approach to enhance Cu wire bonding yield through parameter optimization", 
    "pagination": "29-36", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dad27ff1493e65fa7bd69837c140f21768e9916fab69c28628c5c9c046f0c3e7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1111/j.1747-1567.2011.00799.x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045937893"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1111/j.1747-1567.2011.00799.x", 
      "https://app.dimensions.ai/details/publication/pub.1045937893"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000483.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1111/j.1747-1567.2011.00799.x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1111/j.1747-1567.2011.00799.x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1111/j.1747-1567.2011.00799.x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1111/j.1747-1567.2011.00799.x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1111/j.1747-1567.2011.00799.x'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1111/j.1747-1567.2011.00799.x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nec85d5ad411e4ccf8d4e6ec6558c6183
4 schema:citation sg:pub.10.1007/978-1-4471-0577-0
5 sg:pub.10.1023/a:1022959631926
6 sg:pub.10.1057/palgrave.jors.2601888
7 https://app.dimensions.ai/details/publication/pub.1024954485
8 https://doi.org/10.1002/9780470258354
9 https://doi.org/10.1016/0893-6080(90)90005-6
10 https://doi.org/10.1016/0924-0136(92)90425-r
11 https://doi.org/10.1016/j.microrel.2010.09.007
12 https://doi.org/10.1016/j.optlastec.2006.02.005
13 https://doi.org/10.1016/s0166-3615(02)00140-9
14 https://doi.org/10.1016/s0305-0548(96)00077-9
15 https://doi.org/10.1016/s0952-1976(00)00021-x
16 https://doi.org/10.1080/00207540600905620
17 https://doi.org/10.1080/00207540802178109
18 https://doi.org/10.1080/00207543.2011.574499
19 https://doi.org/10.1080/0020772031000115605
20 https://doi.org/10.1080/00224065.1996.11979684
21 https://doi.org/10.1080/095372898234370
22 https://doi.org/10.1088/0960-1317/15/12/022
23 schema:datePublished 2014-05
24 schema:datePublishedReg 2014-05-01
25 schema:description Gold (Au) wire is the preferred material for wire bonding in the semiconductor industry. However, the rising price of Au has become a key issue in IC assembly and design. To stay competitive, costs must be reduced. Copper (Cu) wire can also be used in wire bonding. Cu wire is cheaper than Au wire. To obtain the best yield of wire bonding and to reduce cost, this study develops an experimental approach by utilizing neural networks to establish the functional relationship between control factors and responses and then applying genetic algorithms to obtain the optimal control factor settings of the Cu wire bonding process. Using the developed approach for Cu wire bonding parameter design, the production yield increased from 98.5 to 99.65%, resulting in approximately USD 1.16 million in savings.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N165d122bd6d2460fbb381693979a486f
30 Nc6111b48e7514489ab48e95dbf2fbf9f
31 sg:journal.1137303
32 schema:name An experimental approach to enhance Cu wire bonding yield through parameter optimization
33 schema:pagination 29-36
34 schema:productId N053079a80c4846d89943878cf9939ec6
35 N1acf02a190594839834f6b1a90e99561
36 N6950c265a89d46318accdd280627c013
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045937893
38 https://doi.org/10.1111/j.1747-1567.2011.00799.x
39 schema:sdDatePublished 2019-04-11T01:52
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nbac051808a484b24a7c30c1f1c79ae61
42 schema:url http://link.springer.com/10.1111/j.1747-1567.2011.00799.x
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N053079a80c4846d89943878cf9939ec6 schema:name doi
47 schema:value 10.1111/j.1747-1567.2011.00799.x
48 rdf:type schema:PropertyValue
49 N165d122bd6d2460fbb381693979a486f schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 N1acf02a190594839834f6b1a90e99561 schema:name dimensions_id
52 schema:value pub.1045937893
53 rdf:type schema:PropertyValue
54 N1f50e6d66d5d483f82edea03d046dda4 rdf:first N3996e955c70a44d8975c11c170353fa3
55 rdf:rest Neb827edc6b1941ec857c1bf3d81f53d4
56 N252c19a88efa42e19b0c02391f47ab32 rdf:first sg:person.014243147104.30
57 rdf:rest N1f50e6d66d5d483f82edea03d046dda4
58 N3996e955c70a44d8975c11c170353fa3 schema:affiliation https://www.grid.ac/institutes/grid.454156.7
59 schema:familyName Chou
60 schema:givenName C. -J.
61 rdf:type schema:Person
62 N6950c265a89d46318accdd280627c013 schema:name readcube_id
63 schema:value dad27ff1493e65fa7bd69837c140f21768e9916fab69c28628c5c9c046f0c3e7
64 rdf:type schema:PropertyValue
65 Na9cf2975f49e4acfb29f5195377deda3 schema:affiliation https://www.grid.ac/institutes/grid.134936.a
66 schema:familyName Chang
67 schema:givenName A. Alec
68 rdf:type schema:Person
69 Nbac051808a484b24a7c30c1f1c79ae61 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nc6111b48e7514489ab48e95dbf2fbf9f schema:volumeNumber 38
72 rdf:type schema:PublicationVolume
73 Ncf63d372a8b8435d9ec541527ea960ff schema:name ThaiLin Semiconductor Corp., Hsinchu, Taiwan
74 rdf:type schema:Organization
75 Neb827edc6b1941ec857c1bf3d81f53d4 rdf:first Na9cf2975f49e4acfb29f5195377deda3
76 rdf:rest rdf:nil
77 Nec85d5ad411e4ccf8d4e6ec6558c6183 rdf:first sg:person.016137101441.02
78 rdf:rest N252c19a88efa42e19b0c02391f47ab32
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
83 schema:name Materials Engineering
84 rdf:type schema:DefinedTerm
85 sg:journal.1137303 schema:issn 0732-8818
86 1747-1567
87 schema:name Experimental Techniques
88 rdf:type schema:Periodical
89 sg:person.014243147104.30 schema:affiliation Ncf63d372a8b8435d9ec541527ea960ff
90 schema:familyName Yeh
91 schema:givenName C. -J.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014243147104.30
93 rdf:type schema:Person
94 sg:person.016137101441.02 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
95 schema:familyName Su
96 schema:givenName C. -T.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137101441.02
98 rdf:type schema:Person
99 sg:pub.10.1007/978-1-4471-0577-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024954485
100 https://doi.org/10.1007/978-1-4471-0577-0
101 rdf:type schema:CreativeWork
102 sg:pub.10.1023/a:1022959631926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009401153
103 https://doi.org/10.1023/a:1022959631926
104 rdf:type schema:CreativeWork
105 sg:pub.10.1057/palgrave.jors.2601888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017711318
106 https://doi.org/10.1057/palgrave.jors.2601888
107 rdf:type schema:CreativeWork
108 https://app.dimensions.ai/details/publication/pub.1024954485 schema:CreativeWork
109 https://doi.org/10.1002/9780470258354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661859
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0893-6080(90)90005-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042519969
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0924-0136(92)90425-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1001980377
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.microrel.2010.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007512575
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.optlastec.2006.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014571161
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0166-3615(02)00140-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048380999
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0305-0548(96)00077-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043540840
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0952-1976(00)00021-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002133168
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1080/00207540600905620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053577947
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/00207540802178109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001224183
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1080/00207543.2011.574499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006630996
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/0020772031000115605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041702851
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/00224065.1996.11979684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101150091
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1080/095372898234370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045197653
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/0960-1317/15/12/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015321513
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.134936.a schema:alternateName University of Missouri
140 schema:name Department of Industrial & Manufacturing Systems Engineering, University of Missouri, Columbia, MO, USA
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
143 schema:name Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.454156.7 schema:alternateName Taiwan Semiconductor Manufacturing Company (Taiwan)
146 schema:name Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...