Black holes as mirrors: quantum information in random subsystems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-09-26

AUTHORS

Patrick Hayden, John Preskill

ABSTRACT

We study information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already proceeded past the ``half-way'' point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the black hole is revealed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting codes that nearly achieve the capacity of the quantum erasure channel. Our estimate of a black hole's information retention time, based on speculative dynamical assumptions, is just barely compatible with the black hole complementarity hypothesis. More... »

PAGES

120

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1088/1126-6708/2007/09/120

DOI

http://dx.doi.org/10.1088/1126-6708/2007/09/120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023220297


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "McGill University", 
          "id": "https://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "School of Computer Science, McGill University, Montreal, Quebec, H3A 2A7, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayden", 
        "givenName": "Patrick", 
        "id": "sg:person.01203050126.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203050126.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preskill", 
        "givenName": "John", 
        "id": "sg:person.010154367121.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010154367121.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/299802a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005824196", 
          "https://doi.org/10.1038/299802a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.49.966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010754987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.49.966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010754987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.3081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015408623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.3081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015408623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(96)00345-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026354934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(82)90084-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034398217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(82)90084-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034398217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042796535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042796535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.62.024027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047188617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.62.024027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047188617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.48.3743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049738959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.48.3743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049738959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90184-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050864850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90184-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050864850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.523763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058100783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.2460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.2460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.720553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.850671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.1998.v2.n2.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072456893"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-09-26", 
    "datePublishedReg": "2007-09-26", 
    "description": "We study information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already proceeded past the ``half-way'' point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the black hole is revealed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting codes that nearly achieve the capacity of the quantum erasure channel. Our estimate of a black hole's information retention time, based on speculative dynamical assumptions, is just barely compatible with the black hole complementarity hypothesis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1088/1126-6708/2007/09/120", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "09", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2007"
      }
    ], 
    "name": "Black holes as mirrors: quantum information in random subsystems", 
    "pagination": "120", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ea084951f86109abb9b50a489ff20341820b4e72082eaa45833c2e7b34e7e1b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1088/1126-6708/2007/09/120"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023220297"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1088/1126-6708/2007/09/120", 
      "https://app.dimensions.ai/details/publication/pub.1023220297"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000039.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://iopscience.iop.org/1126-6708/2007/09/120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2007/09/120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2007/09/120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2007/09/120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2007/09/120'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      40 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1088/1126-6708/2007/09/120 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nbd2c6503c41145c6a843507ecdce3e46
4 schema:citation sg:pub.10.1038/299802a0
5 https://doi.org/10.1016/0370-2693(96)00345-0
6 https://doi.org/10.1016/0375-9601(82)90084-6
7 https://doi.org/10.1016/0550-3213(84)90184-6
8 https://doi.org/10.1063/1.523763
9 https://doi.org/10.1103/physrevd.14.2460
10 https://doi.org/10.1103/physrevd.48.3743
11 https://doi.org/10.1103/physrevd.49.966
12 https://doi.org/10.1103/physrevd.62.024027
13 https://doi.org/10.1103/physrevlett.71.1291
14 https://doi.org/10.1103/physrevlett.83.3081
15 https://doi.org/10.1109/18.720553
16 https://doi.org/10.1109/18.850671
17 https://doi.org/10.4310/atmp.1998.v2.n2.a1
18 schema:datePublished 2007-09-26
19 schema:datePublishedReg 2007-09-26
20 schema:description We study information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already proceeded past the ``half-way'' point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the black hole is revealed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting codes that nearly achieve the capacity of the quantum erasure channel. Our estimate of a black hole's information retention time, based on speculative dynamical assumptions, is just barely compatible with the black hole complementarity hypothesis.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N0eba1161c5954ad8a0527a5a3d1acb03
25 Ne806fdbae39c41b68cc13b95dca4f3cb
26 sg:journal.1052482
27 schema:name Black holes as mirrors: quantum information in random subsystems
28 schema:pagination 120
29 schema:productId N19cd2a22e4894ac78a3b0accbec5323e
30 N5d65242198e0451fae70f5595535f3ed
31 Ndc4251b516e341ac8eeb6aab3bd5441e
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023220297
33 https://doi.org/10.1088/1126-6708/2007/09/120
34 schema:sdDatePublished 2019-04-10T23:43
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N497c20a173ac4282a0c5289a9650a34d
37 schema:url http://iopscience.iop.org/1126-6708/2007/09/120
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0eba1161c5954ad8a0527a5a3d1acb03 schema:volumeNumber 2007
42 rdf:type schema:PublicationVolume
43 N19cd2a22e4894ac78a3b0accbec5323e schema:name dimensions_id
44 schema:value pub.1023220297
45 rdf:type schema:PropertyValue
46 N497c20a173ac4282a0c5289a9650a34d schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N5d65242198e0451fae70f5595535f3ed schema:name readcube_id
49 schema:value 6ea084951f86109abb9b50a489ff20341820b4e72082eaa45833c2e7b34e7e1b
50 rdf:type schema:PropertyValue
51 Nbd2c6503c41145c6a843507ecdce3e46 rdf:first sg:person.01203050126.50
52 rdf:rest Nc31a939692eb45dda9a437be031cf9cd
53 Nc31a939692eb45dda9a437be031cf9cd rdf:first sg:person.010154367121.68
54 rdf:rest rdf:nil
55 Ndc4251b516e341ac8eeb6aab3bd5441e schema:name doi
56 schema:value 10.1088/1126-6708/2007/09/120
57 rdf:type schema:PropertyValue
58 Ne806fdbae39c41b68cc13b95dca4f3cb schema:issueNumber 09
59 rdf:type schema:PublicationIssue
60 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
61 schema:name Physical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
64 schema:name Quantum Physics
65 rdf:type schema:DefinedTerm
66 sg:journal.1052482 schema:issn 1029-8479
67 1126-6708
68 schema:name Journal of High Energy Physics
69 rdf:type schema:Periodical
70 sg:person.010154367121.68 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
71 schema:familyName Preskill
72 schema:givenName John
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010154367121.68
74 rdf:type schema:Person
75 sg:person.01203050126.50 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
76 schema:familyName Hayden
77 schema:givenName Patrick
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203050126.50
79 rdf:type schema:Person
80 sg:pub.10.1038/299802a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005824196
81 https://doi.org/10.1038/299802a0
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0370-2693(96)00345-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026354934
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0375-9601(82)90084-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034398217
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0550-3213(84)90184-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050864850
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1063/1.523763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058100783
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physrevd.14.2460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060684315
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physrevd.48.3743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049738959
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevd.49.966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010754987
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevd.62.024027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047188617
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevlett.71.1291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042796535
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevlett.83.3081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015408623
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/18.720553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100785
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/18.850671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101345
106 rdf:type schema:CreativeWork
107 https://doi.org/10.4310/atmp.1998.v2.n2.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456893
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
110 schema:name School of Computer Science, McGill University, Montreal, Quebec, H3A 2A7, Canada
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
113 schema:name Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, U.S.A
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...