The Coulomb branch of the Leigh-Strassler deformation and matrix models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-12-31

AUTHORS

Francesco Benini

ABSTRACT

The Dijkgraaf-Vafa approach is used in order to study the Coulomb branch of the Leigh-Strassler massive deformation of = 4 SYM with gauge group U(N). The theory has = 1 SUSY and an N-dimensional Coulomb branch of vacua, which can be described by a family of ``generalized'' Seiberg-Witten curves. The matrix model analysis is performed by adding a tree level potential that selects particular vacua. The family of curves is found: it consists of order N branched coverings of a base torus, and it is described by multi-valued functions on the latter. The relation between the potential and the vacuum is made explicit. The gauge group SU(N) is also considered. Finally the resolvents from which expectation values of chiral operators can be extracted are presented. More... »

PAGES

068

References to SciGraph publications

  • 2002-11-20. Massive Vacua of 𝒩 = 1* Theory and S-duality from Matrix Models in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-11-20. Exact Superpotentials from Matrix Models in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-04-10. Chiral rings and phases of supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-10-22. Critical points of glueball superpotentials and equilibria of integrable systems in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-08-24. S-duality, deconstruction and confinement for a marginal deformation of 𝒩 = 4 SUSY Yang-Mills in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-06-16. New modular invariance in the 𝒩 = 1* theory, operator mixings and supergravity singularities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-04-15. New results from glueball superpotentials and matrix models: the Leigh-Strassler deformation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-08-03. On the geometry of matrix models for 𝒩 = 1* in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-12-02. S-duality of the Leigh-Strassler Deformation via Matrix Models in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-12-24. Chiral Rings and Anomalies in Supersymmetric Gauge Theory in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1088/1126-6708/2004/12/068

    DOI

    http://dx.doi.org/10.1088/1126-6708/2004/12/068

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032282871


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy", 
              "id": "http://www.grid.ac/institutes/grid.6093.c", 
              "name": [
                "International School for Advanced Studies (SISSA), Via Beirut 2-4, I-34013 Trieste, Italy", 
                "Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benini", 
            "givenName": "Francesco", 
            "id": "sg:person.011505670225.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2002/11/040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040967695", 
              "https://doi.org/10.1088/1126-6708/2002/11/040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013521517", 
              "https://doi.org/10.1088/1126-6708/2002/12/071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/10/051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013595927", 
              "https://doi.org/10.1088/1126-6708/2003/10/051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/08/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009805434", 
              "https://doi.org/10.1088/1126-6708/2003/08/004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/08/043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004132401", 
              "https://doi.org/10.1088/1126-6708/2004/08/043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/06/026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048496491", 
              "https://doi.org/10.1088/1126-6708/2000/06/026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/11/039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024471057", 
              "https://doi.org/10.1088/1126-6708/2002/11/039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/04/018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007022577", 
              "https://doi.org/10.1088/1126-6708/2003/04/018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025539886", 
              "https://doi.org/10.1088/1126-6708/2002/12/003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/04/025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027743278", 
              "https://doi.org/10.1088/1126-6708/2003/04/025"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-12-31", 
        "datePublishedReg": "2004-12-31", 
        "description": "The Dijkgraaf-Vafa approach is used in order to study the Coulomb branch of the Leigh-Strassler massive deformation of = 4 SYM with gauge group U(N). The theory has = 1 SUSY and an N-dimensional Coulomb branch of vacua, which can be described by a family of ``generalized'' Seiberg-Witten curves. The matrix model analysis is performed by adding a tree level potential that selects particular vacua. The family of curves is found: it consists of order N branched coverings of a base torus, and it is described by multi-valued functions on the latter. The relation between the potential and the vacuum is made explicit. The gauge group SU(N) is also considered. Finally the resolvents from which expectation values of chiral operators can be extracted are presented.", 
        "genre": "article", 
        "id": "sg:pub.10.1088/1126-6708/2004/12/068", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2004"
          }
        ], 
        "keywords": [
          "Coulomb branch", 
          "gauge group", 
          "Seiberg-Witten curve", 
          "Leigh-Strassler deformation", 
          "dimensional Coulomb branch", 
          "tree-level potential", 
          "multi-valued functions", 
          "particular vacuum", 
          "chiral operators", 
          "matrix model", 
          "family of curves", 
          "massive deformation", 
          "expectation values", 
          "order n", 
          "matrix model analysis", 
          "resolvent", 
          "vacuum", 
          "torus", 
          "operators", 
          "SYM", 
          "theory", 
          "branches", 
          "SUSY", 
          "model analysis", 
          "curves", 
          "model", 
          "covering", 
          "deformation", 
          "approach", 
          "function", 
          "order", 
          "values", 
          "relation", 
          "potential", 
          "family", 
          "analysis", 
          "group"
        ], 
        "name": "The Coulomb branch of the Leigh-Strassler deformation and matrix models", 
        "pagination": "068", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032282871"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1088/1126-6708/2004/12/068"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1088/1126-6708/2004/12/068", 
          "https://app.dimensions.ai/details/publication/pub.1032282871"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_383.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1088/1126-6708/2004/12/068"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2004/12/068'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2004/12/068'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2004/12/068'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2004/12/068'


     

    This table displays all metadata directly associated to this object as RDF triples.

    135 TRIPLES      21 PREDICATES      71 URIs      53 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1088/1126-6708/2004/12/068 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd8bd3a123ec248c9ae710a0611ec75f3
    4 schema:citation sg:pub.10.1088/1126-6708/2000/06/026
    5 sg:pub.10.1088/1126-6708/2002/11/039
    6 sg:pub.10.1088/1126-6708/2002/11/040
    7 sg:pub.10.1088/1126-6708/2002/12/003
    8 sg:pub.10.1088/1126-6708/2002/12/071
    9 sg:pub.10.1088/1126-6708/2003/04/018
    10 sg:pub.10.1088/1126-6708/2003/04/025
    11 sg:pub.10.1088/1126-6708/2003/08/004
    12 sg:pub.10.1088/1126-6708/2003/10/051
    13 sg:pub.10.1088/1126-6708/2004/08/043
    14 schema:datePublished 2004-12-31
    15 schema:datePublishedReg 2004-12-31
    16 schema:description The Dijkgraaf-Vafa approach is used in order to study the Coulomb branch of the Leigh-Strassler massive deformation of = 4 SYM with gauge group U(N). The theory has = 1 SUSY and an N-dimensional Coulomb branch of vacua, which can be described by a family of ``generalized'' Seiberg-Witten curves. The matrix model analysis is performed by adding a tree level potential that selects particular vacua. The family of curves is found: it consists of order N branched coverings of a base torus, and it is described by multi-valued functions on the latter. The relation between the potential and the vacuum is made explicit. The gauge group SU(N) is also considered. Finally the resolvents from which expectation values of chiral operators can be extracted are presented.
    17 schema:genre article
    18 schema:isAccessibleForFree true
    19 schema:isPartOf N417e2ac5ec6149e2a296bc10b0a16fa7
    20 Nfecf5e6c16844b08ae71cdd94fdb3cd2
    21 sg:journal.1052482
    22 schema:keywords Coulomb branch
    23 Leigh-Strassler deformation
    24 SUSY
    25 SYM
    26 Seiberg-Witten curve
    27 analysis
    28 approach
    29 branches
    30 chiral operators
    31 covering
    32 curves
    33 deformation
    34 dimensional Coulomb branch
    35 expectation values
    36 family
    37 family of curves
    38 function
    39 gauge group
    40 group
    41 massive deformation
    42 matrix model
    43 matrix model analysis
    44 model
    45 model analysis
    46 multi-valued functions
    47 operators
    48 order
    49 order n
    50 particular vacuum
    51 potential
    52 relation
    53 resolvent
    54 theory
    55 torus
    56 tree-level potential
    57 vacuum
    58 values
    59 schema:name The Coulomb branch of the Leigh-Strassler deformation and matrix models
    60 schema:pagination 068
    61 schema:productId N07ae9465c9f74e1b87d94c03e3bfb8fe
    62 N593c765224de4c31aabf91c98fb9f2dd
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032282871
    64 https://doi.org/10.1088/1126-6708/2004/12/068
    65 schema:sdDatePublished 2022-12-01T06:24
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher N4e0877f6b5cb4ef7abad91cd3e8709ac
    68 schema:url https://doi.org/10.1088/1126-6708/2004/12/068
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N07ae9465c9f74e1b87d94c03e3bfb8fe schema:name doi
    73 schema:value 10.1088/1126-6708/2004/12/068
    74 rdf:type schema:PropertyValue
    75 N417e2ac5ec6149e2a296bc10b0a16fa7 schema:volumeNumber 2004
    76 rdf:type schema:PublicationVolume
    77 N4e0877f6b5cb4ef7abad91cd3e8709ac schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 N593c765224de4c31aabf91c98fb9f2dd schema:name dimensions_id
    80 schema:value pub.1032282871
    81 rdf:type schema:PropertyValue
    82 Nd8bd3a123ec248c9ae710a0611ec75f3 rdf:first sg:person.011505670225.30
    83 rdf:rest rdf:nil
    84 Nfecf5e6c16844b08ae71cdd94fdb3cd2 schema:issueNumber 12
    85 rdf:type schema:PublicationIssue
    86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Mathematical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Pure Mathematics
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1052482 schema:issn 1029-8479
    93 1126-6708
    94 schema:name Journal of High Energy Physics
    95 schema:publisher Springer Nature
    96 rdf:type schema:Periodical
    97 sg:person.011505670225.30 schema:affiliation grid-institutes:grid.6093.c
    98 schema:familyName Benini
    99 schema:givenName Francesco
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30
    101 rdf:type schema:Person
    102 sg:pub.10.1088/1126-6708/2000/06/026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048496491
    103 https://doi.org/10.1088/1126-6708/2000/06/026
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1088/1126-6708/2002/11/039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024471057
    106 https://doi.org/10.1088/1126-6708/2002/11/039
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1088/1126-6708/2002/11/040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040967695
    109 https://doi.org/10.1088/1126-6708/2002/11/040
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1088/1126-6708/2002/12/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025539886
    112 https://doi.org/10.1088/1126-6708/2002/12/003
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1088/1126-6708/2002/12/071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013521517
    115 https://doi.org/10.1088/1126-6708/2002/12/071
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1088/1126-6708/2003/04/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007022577
    118 https://doi.org/10.1088/1126-6708/2003/04/018
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1088/1126-6708/2003/04/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027743278
    121 https://doi.org/10.1088/1126-6708/2003/04/025
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1088/1126-6708/2003/08/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009805434
    124 https://doi.org/10.1088/1126-6708/2003/08/004
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1088/1126-6708/2003/10/051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013595927
    127 https://doi.org/10.1088/1126-6708/2003/10/051
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1088/1126-6708/2004/08/043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004132401
    130 https://doi.org/10.1088/1126-6708/2004/08/043
    131 rdf:type schema:CreativeWork
    132 grid-institutes:grid.6093.c schema:alternateName Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy
    133 schema:name International School for Advanced Studies (SISSA), Via Beirut 2-4, I-34013 Trieste, Italy
    134 Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa I-56126, Italy
    135 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...