Topological strings and Nekrasov's formulas View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-12-03

AUTHORS

Tohru Eguchi, Hiroaki Kanno

ABSTRACT

We apply the method of geometric transition and compute all genus topological closed string amplitudes compactified on local F0 by making use of the Chern-Simons gauge theory. We find an exact agreement of the results of our computation with the formula proposed recently by Nekrasov for = 2 SU(2) gauge theory with two parameters β and . β is related to the size of the fiber of F0 and corresponds to the string coupling constant. Thus Nekrasov's formula encodes all the information of topological string amplitudes on local F0 including the number of holomorphic curves at arbitrary genus. By taking suitable limits β and/or →0 one recovers the four-dimensional Seiberg-Witten theory and also its coupling to external graviphoton fields. We also compute topological string amplitude for the local 2nd del Pezzo surface and check the consistency with Nekrasov's formula of SU(2) gauge theory with a matter field in the vector representation. More... »

PAGES

006

References to SciGraph publications

  • 1989-09. Quantum field theory and the Jones polynomial in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2003-03-27. Gravitational corrections in supersymmetric gauge theory and matrix models in JOURNAL OF HIGH ENERGY PHYSICS
  • 1994-10. Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1088/1126-6708/2003/12/006

    DOI

    http://dx.doi.org/10.1088/1126-6708/2003/12/006

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011536445


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Faculty of Science, University of Tokyo, Tokyo, 113-0033, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Physics, Faculty of Science, University of Tokyo, Tokyo, 113-0033, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eguchi", 
            "givenName": "Tohru", 
            "id": "sg:person.013532546111.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013532546111.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, Japan", 
              "id": "http://www.grid.ac/institutes/grid.27476.30", 
              "name": [
                "Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kanno", 
            "givenName": "Hiroaki", 
            "id": "sg:person.010720365171.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720365171.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02099774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049578045", 
              "https://doi.org/10.1007/bf02099774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01217730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033035951", 
              "https://doi.org/10.1007/bf01217730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/03/051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037023366", 
              "https://doi.org/10.1088/1126-6708/2003/03/051"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-12-03", 
        "datePublishedReg": "2003-12-03", 
        "description": "We apply the method of geometric transition and compute all genus topological closed string amplitudes compactified on local F0 by making use of the Chern-Simons gauge theory. We find an exact agreement of the results of our computation with the formula proposed recently by Nekrasov for = 2 SU(2) gauge theory with two parameters \u03b2 and . \u03b2 is related to the size of the fiber of F0 and corresponds to the string coupling constant. Thus Nekrasov's formula encodes all the information of topological string amplitudes on local F0 including the number of holomorphic curves at arbitrary genus. By taking suitable limits \u03b2 and/or \u21920 one recovers the four-dimensional Seiberg-Witten theory and also its coupling to external graviphoton fields. We also compute topological string amplitude for the local 2nd del Pezzo surface and check the consistency with Nekrasov's formula of SU(2) gauge theory with a matter field in the vector representation.", 
        "genre": "article", 
        "id": "sg:pub.10.1088/1126-6708/2003/12/006", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2003"
          }
        ], 
        "keywords": [
          "topological string amplitudes", 
          "string amplitudes", 
          "gauge theory", 
          "Chern-Simons gauge theory", 
          "Witten theory", 
          "del Pezzo surfaces", 
          "closed string amplitudes", 
          "topological strings", 
          "geometric transition", 
          "matter fields", 
          "string coupling", 
          "arbitrary genus", 
          "holomorphic curves", 
          "graviphoton field", 
          "limit \u03b2", 
          "Pezzo surfaces", 
          "parameter \u03b2", 
          "theory", 
          "formula", 
          "exact agreement", 
          "Seiberg", 
          "amplitude", 
          "Nekrasov", 
          "coupling", 
          "field", 
          "computation", 
          "vector representation", 
          "strings", 
          "representation", 
          "transition", 
          "agreement", 
          "F0", 
          "curves", 
          "number", 
          "consistency", 
          "results", 
          "size", 
          "surface", 
          "information", 
          "use", 
          "fibers", 
          "genus", 
          "method"
        ], 
        "name": "Topological strings and Nekrasov's formulas", 
        "pagination": "006", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011536445"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1088/1126-6708/2003/12/006"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1088/1126-6708/2003/12/006", 
          "https://app.dimensions.ai/details/publication/pub.1011536445"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_369.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1088/1126-6708/2003/12/006"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/12/006'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/12/006'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/12/006'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/12/006'


     

    This table displays all metadata directly associated to this object as RDF triples.

    123 TRIPLES      22 PREDICATES      71 URIs      60 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1088/1126-6708/2003/12/006 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd425224649334fabae567e1c89de77e1
    4 schema:citation sg:pub.10.1007/bf01217730
    5 sg:pub.10.1007/bf02099774
    6 sg:pub.10.1088/1126-6708/2003/03/051
    7 schema:datePublished 2003-12-03
    8 schema:datePublishedReg 2003-12-03
    9 schema:description We apply the method of geometric transition and compute all genus topological closed string amplitudes compactified on local F0 by making use of the Chern-Simons gauge theory. We find an exact agreement of the results of our computation with the formula proposed recently by Nekrasov for = 2 SU(2) gauge theory with two parameters β and . β is related to the size of the fiber of F0 and corresponds to the string coupling constant. Thus Nekrasov's formula encodes all the information of topological string amplitudes on local F0 including the number of holomorphic curves at arbitrary genus. By taking suitable limits β and/or →0 one recovers the four-dimensional Seiberg-Witten theory and also its coupling to external graviphoton fields. We also compute topological string amplitude for the local 2nd del Pezzo surface and check the consistency with Nekrasov's formula of SU(2) gauge theory with a matter field in the vector representation.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N270bbb2349cc486b89aee56a045d4398
    14 Nbfc856942dd74200a520fe7d1c39b313
    15 sg:journal.1052482
    16 schema:keywords Chern-Simons gauge theory
    17 F0
    18 Nekrasov
    19 Pezzo surfaces
    20 Seiberg
    21 Witten theory
    22 agreement
    23 amplitude
    24 arbitrary genus
    25 closed string amplitudes
    26 computation
    27 consistency
    28 coupling
    29 curves
    30 del Pezzo surfaces
    31 exact agreement
    32 fibers
    33 field
    34 formula
    35 gauge theory
    36 genus
    37 geometric transition
    38 graviphoton field
    39 holomorphic curves
    40 information
    41 limit β
    42 matter fields
    43 method
    44 number
    45 parameter β
    46 representation
    47 results
    48 size
    49 string amplitudes
    50 string coupling
    51 strings
    52 surface
    53 theory
    54 topological string amplitudes
    55 topological strings
    56 transition
    57 use
    58 vector representation
    59 schema:name Topological strings and Nekrasov's formulas
    60 schema:pagination 006
    61 schema:productId N33e8d05d120b429b8914d7939a2355d2
    62 Nb3982b68381a42f1ba14c7afe434924d
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011536445
    64 https://doi.org/10.1088/1126-6708/2003/12/006
    65 schema:sdDatePublished 2022-05-20T07:22
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher N099725677531406ab03b75dd7b202c1a
    68 schema:url https://doi.org/10.1088/1126-6708/2003/12/006
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N0312244db50b41a4a81c46e39d4143a4 rdf:first sg:person.010720365171.96
    73 rdf:rest rdf:nil
    74 N099725677531406ab03b75dd7b202c1a schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 N270bbb2349cc486b89aee56a045d4398 schema:volumeNumber 2003
    77 rdf:type schema:PublicationVolume
    78 N33e8d05d120b429b8914d7939a2355d2 schema:name doi
    79 schema:value 10.1088/1126-6708/2003/12/006
    80 rdf:type schema:PropertyValue
    81 Nb3982b68381a42f1ba14c7afe434924d schema:name dimensions_id
    82 schema:value pub.1011536445
    83 rdf:type schema:PropertyValue
    84 Nbfc856942dd74200a520fe7d1c39b313 schema:issueNumber 12
    85 rdf:type schema:PublicationIssue
    86 Nd425224649334fabae567e1c89de77e1 rdf:first sg:person.013532546111.54
    87 rdf:rest N0312244db50b41a4a81c46e39d4143a4
    88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Mathematical Sciences
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Pure Mathematics
    93 rdf:type schema:DefinedTerm
    94 sg:journal.1052482 schema:issn 1029-8479
    95 1126-6708
    96 schema:name Journal of High Energy Physics
    97 schema:publisher Springer Nature
    98 rdf:type schema:Periodical
    99 sg:person.010720365171.96 schema:affiliation grid-institutes:grid.27476.30
    100 schema:familyName Kanno
    101 schema:givenName Hiroaki
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720365171.96
    103 rdf:type schema:Person
    104 sg:person.013532546111.54 schema:affiliation grid-institutes:grid.26999.3d
    105 schema:familyName Eguchi
    106 schema:givenName Tohru
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013532546111.54
    108 rdf:type schema:Person
    109 sg:pub.10.1007/bf01217730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033035951
    110 https://doi.org/10.1007/bf01217730
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/bf02099774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049578045
    113 https://doi.org/10.1007/bf02099774
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1088/1126-6708/2003/03/051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037023366
    116 https://doi.org/10.1088/1126-6708/2003/03/051
    117 rdf:type schema:CreativeWork
    118 grid-institutes:grid.26999.3d schema:alternateName Department of Physics, Faculty of Science, University of Tokyo, Tokyo, 113-0033, Japan
    119 schema:name Department of Physics, Faculty of Science, University of Tokyo, Tokyo, 113-0033, Japan
    120 rdf:type schema:Organization
    121 grid-institutes:grid.27476.30 schema:alternateName Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, Japan
    122 schema:name Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, Japan
    123 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...