Dibaryon spectroscopy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-08-29

AUTHORS

Christopher P. Herzog, James McKernan

ABSTRACT

The AdS/CFT correspondence relates dibaryons in superconformal gauge theories to holomorphic curves in Kähler-Einstein surfaces. The degree of the holomorphic curves is proportional to the gauge theory conformal dimension of the dibaryons. Moreover, the number of holomorphic curves should match, in an appropriately defined sense, the number of dibaryons. Using AdS/CFT backgrounds built from the generalized conifolds of Gubser, Shatashvili, and Nekrasov (1999), we show that the gauge theory prediction for the dimension of dibaryonic operators does indeed match the degree of the corresponding holomorphic curves. For AdS/CFT backgrounds built from cones over del Pezzo surfaces, we are able to match the degree of the curves to the conformal dimension of dibaryons for the nth del Pezzo surface, 1 ≤ n ≤ 6. Also, for the del Pezzos and the Ak type generalized conifolds, for the dibaryons of smallest conformal dimension, we are able to match the number of holomorphic curves with the number of possible dibaryon operators from gauge theory. More... »

PAGES

054

Identifiers

URI

http://scigraph.springernature.com/pub.10.1088/1126-6708/2003/08/054

DOI

http://dx.doi.org/10.1088/1126-6708/2003/08/054

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018611507


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "KITP, UCSB, Dept. of Math., UCSB, Santa Barbara, CA 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herzog", 
        "givenName": "Christopher P.", 
        "id": "sg:person.016212655511.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016212655511.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Dept. of Math., UCSB, Santa Barbara, CA 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McKernan", 
        "givenName": "James", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1088/1126-6708/1999/05/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001534677", 
          "https://doi.org/10.1088/1126-6708/1999/05/003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(02)00078-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001677489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/06/047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002967548", 
          "https://doi.org/10.1088/1126-6708/2002/06/047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-002-0388-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003032512", 
          "https://doi.org/10.1007/s00208-002-0388-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00654-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007002030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2001/12/035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007275558", 
          "https://doi.org/10.1088/1126-6708/2001/12/035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(98)00809-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011223274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/11/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014267900", 
          "https://doi.org/10.1088/1126-6708/2002/11/015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01243902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015109450", 
          "https://doi.org/10.1007/bf01243902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1998/07/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017981757", 
          "https://doi.org/10.1088/1126-6708/1998/07/006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(99)00083-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022092215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2003/08/058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023159499", 
          "https://doi.org/10.1088/1126-6708/2003/08/058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/04/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023292462", 
          "https://doi.org/10.1088/1126-6708/2002/04/009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02097009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026819805", 
          "https://doi.org/10.1007/bf02097009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02097009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026819805", 
          "https://doi.org/10.1007/bf02097009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1998/12/025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028616415", 
          "https://doi.org/10.1088/1126-6708/1998/12/025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(03)00459-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030718669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(03)00459-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030718669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033796066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033796066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1998/07/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035469031", 
          "https://doi.org/10.1088/1126-6708/1998/07/023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/06/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036853937", 
          "https://doi.org/10.1088/1126-6708/2000/06/008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2001/12/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040554299", 
          "https://doi.org/10.1088/1126-6708/2001/12/001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.58.125025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043815514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.58.125025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043815514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(98)00377-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044092489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1999/02/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044931761", 
          "https://doi.org/10.1088/1126-6708/1999/02/019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10586458.2001.10504438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047228733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/01/030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047379563", 
          "https://doi.org/10.1088/1126-6708/2002/01/030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00495-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048631808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.59.025006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050819967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.59.025006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050819967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/11/027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051799938", 
          "https://doi.org/10.1088/1126-6708/2000/11/027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129167x00000477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062901909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.1998.v2.n2.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072456893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.1998.v2.n2.a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072456894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.1998.v2.n6.a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072456926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.1999.v3.n1.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072456932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.1815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073137537"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-08-29", 
    "datePublishedReg": "2003-08-29", 
    "description": "The AdS/CFT correspondence relates dibaryons in superconformal gauge theories to holomorphic curves in K\u00e4hler-Einstein surfaces. The degree of the holomorphic curves is proportional to the gauge theory conformal dimension of the dibaryons. Moreover, the number of holomorphic curves should match, in an appropriately defined sense, the number of dibaryons. Using AdS/CFT backgrounds built from the generalized conifolds of Gubser, Shatashvili, and Nekrasov (1999), we show that the gauge theory prediction for the dimension of dibaryonic operators does indeed match the degree of the corresponding holomorphic curves. For AdS/CFT backgrounds built from cones over del Pezzo surfaces, we are able to match the degree of the curves to the conformal dimension of dibaryons for the nth del Pezzo surface, 1 \u2264 n \u2264 6. Also, for the del Pezzos and the Ak type generalized conifolds, for the dibaryons of smallest conformal dimension, we are able to match the number of holomorphic curves with the number of possible dibaryon operators from gauge theory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1088/1126-6708/2003/08/054", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "08", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2003"
      }
    ], 
    "name": "Dibaryon spectroscopy", 
    "pagination": "054", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "58ad24095e2c0f707a9a3d77a8a1a4ebd6f98f29d0b046a5a4784cbafb7a59df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1088/1126-6708/2003/08/054"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018611507"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1088/1126-6708/2003/08/054", 
      "https://app.dimensions.ai/details/publication/pub.1018611507"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000303.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://iopscience.iop.org/article/10.1088/1126-6708/2003/08/054/meta"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/08/054'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/08/054'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/08/054'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/08/054'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      60 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1088/1126-6708/2003/08/054 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf4e848886e434559a601ce12996f43c3
4 schema:citation sg:pub.10.1007/bf01243902
5 sg:pub.10.1007/bf02097009
6 sg:pub.10.1007/s00208-002-0388-3
7 sg:pub.10.1088/1126-6708/1998/07/006
8 sg:pub.10.1088/1126-6708/1998/07/023
9 sg:pub.10.1088/1126-6708/1998/12/025
10 sg:pub.10.1088/1126-6708/1999/02/019
11 sg:pub.10.1088/1126-6708/1999/05/003
12 sg:pub.10.1088/1126-6708/2000/06/008
13 sg:pub.10.1088/1126-6708/2000/11/027
14 sg:pub.10.1088/1126-6708/2001/12/001
15 sg:pub.10.1088/1126-6708/2001/12/035
16 sg:pub.10.1088/1126-6708/2002/01/030
17 sg:pub.10.1088/1126-6708/2002/04/009
18 sg:pub.10.1088/1126-6708/2002/06/047
19 sg:pub.10.1088/1126-6708/2002/11/015
20 sg:pub.10.1088/1126-6708/2003/08/058
21 https://doi.org/10.1016/s0370-1573(99)00083-6
22 https://doi.org/10.1016/s0370-2693(98)00377-3
23 https://doi.org/10.1016/s0370-2693(98)00809-0
24 https://doi.org/10.1016/s0550-3213(02)00078-0
25 https://doi.org/10.1016/s0550-3213(03)00459-0
26 https://doi.org/10.1016/s0550-3213(98)00495-7
27 https://doi.org/10.1016/s0550-3213(98)00654-3
28 https://doi.org/10.1080/10586458.2001.10504438
29 https://doi.org/10.1103/physrevd.58.125025
30 https://doi.org/10.1103/physrevd.59.025006
31 https://doi.org/10.1103/physrevlett.80.4855
32 https://doi.org/10.1142/s0129167x00000477
33 https://doi.org/10.4310/atmp.1998.v2.n2.a1
34 https://doi.org/10.4310/atmp.1998.v2.n2.a2
35 https://doi.org/10.4310/atmp.1998.v2.n6.a2
36 https://doi.org/10.4310/atmp.1999.v3.n1.a1
37 https://doi.org/10.5802/aif.1815
38 schema:datePublished 2003-08-29
39 schema:datePublishedReg 2003-08-29
40 schema:description The AdS/CFT correspondence relates dibaryons in superconformal gauge theories to holomorphic curves in Kähler-Einstein surfaces. The degree of the holomorphic curves is proportional to the gauge theory conformal dimension of the dibaryons. Moreover, the number of holomorphic curves should match, in an appropriately defined sense, the number of dibaryons. Using AdS/CFT backgrounds built from the generalized conifolds of Gubser, Shatashvili, and Nekrasov (1999), we show that the gauge theory prediction for the dimension of dibaryonic operators does indeed match the degree of the corresponding holomorphic curves. For AdS/CFT backgrounds built from cones over del Pezzo surfaces, we are able to match the degree of the curves to the conformal dimension of dibaryons for the nth del Pezzo surface, 1 ≤ n ≤ 6. Also, for the del Pezzos and the Ak type generalized conifolds, for the dibaryons of smallest conformal dimension, we are able to match the number of holomorphic curves with the number of possible dibaryon operators from gauge theory.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N26ff4ec889374fc78e8d51e5752ba095
45 N7fa163ff761d4122bb14c4a3c39a9d1f
46 sg:journal.1052482
47 schema:name Dibaryon spectroscopy
48 schema:pagination 054
49 schema:productId N2423067dc11b4cafb65f9b3e7d48a91e
50 N6e27928023924eeaaf45ee4a0e41e783
51 Nca6163448fe845eba1233a0cd793c4ce
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018611507
53 https://doi.org/10.1088/1126-6708/2003/08/054
54 schema:sdDatePublished 2019-04-10T19:36
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Ndeecc5b1a6ff434aa4012a6e53f6e8f0
57 schema:url http://iopscience.iop.org/article/10.1088/1126-6708/2003/08/054/meta
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N2423067dc11b4cafb65f9b3e7d48a91e schema:name dimensions_id
62 schema:value pub.1018611507
63 rdf:type schema:PropertyValue
64 N26ff4ec889374fc78e8d51e5752ba095 schema:issueNumber 08
65 rdf:type schema:PublicationIssue
66 N6e27928023924eeaaf45ee4a0e41e783 schema:name doi
67 schema:value 10.1088/1126-6708/2003/08/054
68 rdf:type schema:PropertyValue
69 N7347a32f9afb4f73bdaea1d86386cde5 rdf:first Ncc3174cbd25547a984abb3663e39ab20
70 rdf:rest rdf:nil
71 N7fa163ff761d4122bb14c4a3c39a9d1f schema:volumeNumber 2003
72 rdf:type schema:PublicationVolume
73 Nca6163448fe845eba1233a0cd793c4ce schema:name readcube_id
74 schema:value 58ad24095e2c0f707a9a3d77a8a1a4ebd6f98f29d0b046a5a4784cbafb7a59df
75 rdf:type schema:PropertyValue
76 Ncc3174cbd25547a984abb3663e39ab20 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
77 schema:familyName McKernan
78 schema:givenName James
79 rdf:type schema:Person
80 Ndeecc5b1a6ff434aa4012a6e53f6e8f0 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nf4e848886e434559a601ce12996f43c3 rdf:first sg:person.016212655511.45
83 rdf:rest N7347a32f9afb4f73bdaea1d86386cde5
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
88 schema:name Pure Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1052482 schema:issn 1029-8479
91 1126-6708
92 schema:name Journal of High Energy Physics
93 rdf:type schema:Periodical
94 sg:person.016212655511.45 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
95 schema:familyName Herzog
96 schema:givenName Christopher P.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016212655511.45
98 rdf:type schema:Person
99 sg:pub.10.1007/bf01243902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015109450
100 https://doi.org/10.1007/bf01243902
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf02097009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026819805
103 https://doi.org/10.1007/bf02097009
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00208-002-0388-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003032512
106 https://doi.org/10.1007/s00208-002-0388-3
107 rdf:type schema:CreativeWork
108 sg:pub.10.1088/1126-6708/1998/07/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017981757
109 https://doi.org/10.1088/1126-6708/1998/07/006
110 rdf:type schema:CreativeWork
111 sg:pub.10.1088/1126-6708/1998/07/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035469031
112 https://doi.org/10.1088/1126-6708/1998/07/023
113 rdf:type schema:CreativeWork
114 sg:pub.10.1088/1126-6708/1998/12/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028616415
115 https://doi.org/10.1088/1126-6708/1998/12/025
116 rdf:type schema:CreativeWork
117 sg:pub.10.1088/1126-6708/1999/02/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044931761
118 https://doi.org/10.1088/1126-6708/1999/02/019
119 rdf:type schema:CreativeWork
120 sg:pub.10.1088/1126-6708/1999/05/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001534677
121 https://doi.org/10.1088/1126-6708/1999/05/003
122 rdf:type schema:CreativeWork
123 sg:pub.10.1088/1126-6708/2000/06/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036853937
124 https://doi.org/10.1088/1126-6708/2000/06/008
125 rdf:type schema:CreativeWork
126 sg:pub.10.1088/1126-6708/2000/11/027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051799938
127 https://doi.org/10.1088/1126-6708/2000/11/027
128 rdf:type schema:CreativeWork
129 sg:pub.10.1088/1126-6708/2001/12/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040554299
130 https://doi.org/10.1088/1126-6708/2001/12/001
131 rdf:type schema:CreativeWork
132 sg:pub.10.1088/1126-6708/2001/12/035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007275558
133 https://doi.org/10.1088/1126-6708/2001/12/035
134 rdf:type schema:CreativeWork
135 sg:pub.10.1088/1126-6708/2002/01/030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047379563
136 https://doi.org/10.1088/1126-6708/2002/01/030
137 rdf:type schema:CreativeWork
138 sg:pub.10.1088/1126-6708/2002/04/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023292462
139 https://doi.org/10.1088/1126-6708/2002/04/009
140 rdf:type schema:CreativeWork
141 sg:pub.10.1088/1126-6708/2002/06/047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002967548
142 https://doi.org/10.1088/1126-6708/2002/06/047
143 rdf:type schema:CreativeWork
144 sg:pub.10.1088/1126-6708/2002/11/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014267900
145 https://doi.org/10.1088/1126-6708/2002/11/015
146 rdf:type schema:CreativeWork
147 sg:pub.10.1088/1126-6708/2003/08/058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023159499
148 https://doi.org/10.1088/1126-6708/2003/08/058
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0370-1573(99)00083-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022092215
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0370-2693(98)00377-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044092489
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0370-2693(98)00809-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011223274
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0550-3213(02)00078-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001677489
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0550-3213(03)00459-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030718669
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0550-3213(98)00495-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048631808
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0550-3213(98)00654-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007002030
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/10586458.2001.10504438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047228733
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevd.58.125025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043815514
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevd.59.025006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050819967
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.80.4855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033796066
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1142/s0129167x00000477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062901909
173 rdf:type schema:CreativeWork
174 https://doi.org/10.4310/atmp.1998.v2.n2.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456893
175 rdf:type schema:CreativeWork
176 https://doi.org/10.4310/atmp.1998.v2.n2.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456894
177 rdf:type schema:CreativeWork
178 https://doi.org/10.4310/atmp.1998.v2.n6.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456926
179 rdf:type schema:CreativeWork
180 https://doi.org/10.4310/atmp.1999.v3.n1.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456932
181 rdf:type schema:CreativeWork
182 https://doi.org/10.5802/aif.1815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073137537
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
185 schema:name Dept. of Math., UCSB, Santa Barbara, CA 93106, USA
186 KITP, UCSB, Dept. of Math., UCSB, Santa Barbara, CA 93106, USA
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...