Vortices, instantons and branes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-07-16

AUTHORS

Amihay Hanany, David Tong

ABSTRACT

The purpose of this paper is to describe a relationship between the moduli space of vortices and the moduli space of instantons. We study charge vortices in Yang-Mills-Higgs theories and show that the moduli space is isomorphic to a special lagrangian submanifold of the moduli space of instantons in non-commutative Yang-Mills theories. This submanifold is the fixed point set of a action on the instanton moduli space which rotates the instantons in a plane. To derive this relationship, we present a D-brane construction in which the dynamics of vortices is described by the Higgs branch of a gauge theory with 4 supercharges which is a truncation of the familiar ADHM gauge theory. We further describe a moduli space construction for semi-local vortices, lumps in the and grassmannian sigma-models, and vortices on the non-commutative plane. We argue that this relationship between vortices and instantons underlies many of the quantitative similarities between quantum field theories in two and four dimensions. More... »

PAGES

037

References to SciGraph publications

  • 2003-01. Connections on Naturally Reductive Spaces, Their Dirac Operator and Homogeneous Models in String Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2000-09-13. Nielsen-Olesen vortices in noncommutative abelian Higgs model in JOURNAL OF HIGH ENERGY PHYSICS
  • 1980-02. Space-time symmetries in gauge theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1999-05-06. The BPS spectra of gauge theories in two and four dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-09-30. String theory and noncommutative geometry in JOURNAL OF HIGH ENERGY PHYSICS
  • 1992-03. Vortex scattering in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1999-11-02. Monopoles and dyons in non-commutative geometry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-12-25. Comments on Noncommutative Sigma Models in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-04-07. Quantum Hall states as matrix Chern-Simons theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-11. Instantons on Noncommutative ℝ4, and (2,0) Superconformal Six Dimensional Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2002-07-04. NS5-Branes, T-Duality and Worldsheet Instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1088/1126-6708/2003/07/037

    DOI

    http://dx.doi.org/10.1088/1126-6708/2003/07/037

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022518294


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tong", 
            "givenName": "David", 
            "id": "sg:person.0610206610.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610206610.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2001/04/011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042382506", 
              "https://doi.org/10.1088/1126-6708/2001/04/011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/07/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047192457", 
              "https://doi.org/10.1088/1126-6708/2002/07/013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010202570", 
              "https://doi.org/10.1007/bf02099284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/09/032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007113443", 
              "https://doi.org/10.1088/1126-6708/1999/09/032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035492641", 
              "https://doi.org/10.1007/s002200050490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-002-0743-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007842676", 
              "https://doi.org/10.1007/s00220-002-0743-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/11/005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043178979", 
              "https://doi.org/10.1088/1126-6708/1999/11/005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/05/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000816606", 
              "https://doi.org/10.1088/1126-6708/1999/05/006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/09/018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029715969", 
              "https://doi.org/10.1088/1126-6708/2000/09/018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047709245", 
              "https://doi.org/10.1088/1126-6708/2002/12/073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01200108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008796567", 
              "https://doi.org/10.1007/bf01200108"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-07-16", 
        "datePublishedReg": "2003-07-16", 
        "description": "The purpose of this paper is to describe a relationship between the moduli space of vortices and the moduli space of instantons. We study charge vortices in Yang-Mills-Higgs theories and show that the moduli space is isomorphic to a special lagrangian submanifold of the moduli space of instantons in non-commutative Yang-Mills theories. This submanifold is the fixed point set of a action on the instanton moduli space which rotates the instantons in a plane. To derive this relationship, we present a D-brane construction in which the dynamics of vortices is described by the Higgs branch of a gauge theory with 4 supercharges which is a truncation of the familiar ADHM gauge theory. We further describe a moduli space construction for semi-local vortices, lumps in the and grassmannian sigma-models, and vortices on the non-commutative plane. We argue that this relationship between vortices and instantons underlies many of the quantitative similarities between quantum field theories in two and four dimensions.", 
        "genre": "article", 
        "id": "sg:pub.10.1088/1126-6708/2003/07/037", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "07", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2003"
          }
        ], 
        "keywords": [
          "moduli space", 
          "gauge theory", 
          "non-commutative Yang\u2013Mills theory", 
          "quantum field theory", 
          "non-commutative plane", 
          "dynamics of vortices", 
          "instanton moduli space", 
          "Grassmannian sigma models", 
          "semi-local vortices", 
          "D-brane constructions", 
          "Yang-Mills theory", 
          "special Lagrangian submanifolds", 
          "field theory", 
          "sigma model", 
          "Higgs branch", 
          "Lagrangian submanifolds", 
          "Higgs theory", 
          "charge vortices", 
          "Yang-Mills", 
          "instantons", 
          "space construction", 
          "vortices", 
          "submanifolds", 
          "theory", 
          "space", 
          "supercharges", 
          "brane", 
          "plane", 
          "dynamics", 
          "quantitative similarity", 
          "truncation", 
          "construction", 
          "dimensions", 
          "point", 
          "branches", 
          "lump", 
          "purpose", 
          "relationship", 
          "similarity", 
          "action", 
          "underlies", 
          "paper"
        ], 
        "name": "Vortices, instantons and branes", 
        "pagination": "037", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022518294"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1088/1126-6708/2003/07/037"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1088/1126-6708/2003/07/037", 
          "https://app.dimensions.ai/details/publication/pub.1022518294"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_367.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1088/1126-6708/2003/07/037"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/07/037'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/07/037'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/07/037'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/07/037'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      77 URIs      58 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1088/1126-6708/2003/07/037 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N136b386831684ba9b07f3b615fc8931e
    4 schema:citation sg:pub.10.1007/bf01200108
    5 sg:pub.10.1007/bf02099284
    6 sg:pub.10.1007/s00220-002-0743-y
    7 sg:pub.10.1007/s002200050490
    8 sg:pub.10.1088/1126-6708/1999/05/006
    9 sg:pub.10.1088/1126-6708/1999/09/032
    10 sg:pub.10.1088/1126-6708/1999/11/005
    11 sg:pub.10.1088/1126-6708/2000/09/018
    12 sg:pub.10.1088/1126-6708/2001/04/011
    13 sg:pub.10.1088/1126-6708/2002/07/013
    14 sg:pub.10.1088/1126-6708/2002/12/073
    15 schema:datePublished 2003-07-16
    16 schema:datePublishedReg 2003-07-16
    17 schema:description The purpose of this paper is to describe a relationship between the moduli space of vortices and the moduli space of instantons. We study charge vortices in Yang-Mills-Higgs theories and show that the moduli space is isomorphic to a special lagrangian submanifold of the moduli space of instantons in non-commutative Yang-Mills theories. This submanifold is the fixed point set of a action on the instanton moduli space which rotates the instantons in a plane. To derive this relationship, we present a D-brane construction in which the dynamics of vortices is described by the Higgs branch of a gauge theory with 4 supercharges which is a truncation of the familiar ADHM gauge theory. We further describe a moduli space construction for semi-local vortices, lumps in the and grassmannian sigma-models, and vortices on the non-commutative plane. We argue that this relationship between vortices and instantons underlies many of the quantitative similarities between quantum field theories in two and four dimensions.
    18 schema:genre article
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N37e09465cf6242e6adc9108b393931c1
    21 N8e5af5bf95de401394653fc329a4d23d
    22 sg:journal.1052482
    23 schema:keywords D-brane constructions
    24 Grassmannian sigma models
    25 Higgs branch
    26 Higgs theory
    27 Lagrangian submanifolds
    28 Yang-Mills
    29 Yang-Mills theory
    30 action
    31 branches
    32 brane
    33 charge vortices
    34 construction
    35 dimensions
    36 dynamics
    37 dynamics of vortices
    38 field theory
    39 gauge theory
    40 instanton moduli space
    41 instantons
    42 lump
    43 moduli space
    44 non-commutative Yang–Mills theory
    45 non-commutative plane
    46 paper
    47 plane
    48 point
    49 purpose
    50 quantitative similarity
    51 quantum field theory
    52 relationship
    53 semi-local vortices
    54 sigma model
    55 similarity
    56 space
    57 space construction
    58 special Lagrangian submanifolds
    59 submanifolds
    60 supercharges
    61 theory
    62 truncation
    63 underlies
    64 vortices
    65 schema:name Vortices, instantons and branes
    66 schema:pagination 037
    67 schema:productId N94eaa63df129415e88d4434c506c414d
    68 N9966b654c7cf455db65418e152a72461
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022518294
    70 https://doi.org/10.1088/1126-6708/2003/07/037
    71 schema:sdDatePublished 2022-11-24T20:50
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N49614670f65b4fa7b0752cc394bc750e
    74 schema:url https://doi.org/10.1088/1126-6708/2003/07/037
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N136b386831684ba9b07f3b615fc8931e rdf:first sg:person.012155553275.80
    79 rdf:rest N1b37f2b1e75244abb55898674193f216
    80 N1b37f2b1e75244abb55898674193f216 rdf:first sg:person.0610206610.36
    81 rdf:rest rdf:nil
    82 N37e09465cf6242e6adc9108b393931c1 schema:volumeNumber 2003
    83 rdf:type schema:PublicationVolume
    84 N49614670f65b4fa7b0752cc394bc750e schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N8e5af5bf95de401394653fc329a4d23d schema:issueNumber 07
    87 rdf:type schema:PublicationIssue
    88 N94eaa63df129415e88d4434c506c414d schema:name doi
    89 schema:value 10.1088/1126-6708/2003/07/037
    90 rdf:type schema:PropertyValue
    91 N9966b654c7cf455db65418e152a72461 schema:name dimensions_id
    92 schema:value pub.1022518294
    93 rdf:type schema:PropertyValue
    94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Mathematical Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Pure Mathematics
    99 rdf:type schema:DefinedTerm
    100 sg:journal.1052482 schema:issn 1029-8479
    101 1126-6708
    102 schema:name Journal of High Energy Physics
    103 schema:publisher Springer Nature
    104 rdf:type schema:Periodical
    105 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.116068.8
    106 schema:familyName Hanany
    107 schema:givenName Amihay
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    109 rdf:type schema:Person
    110 sg:person.0610206610.36 schema:affiliation grid-institutes:grid.116068.8
    111 schema:familyName Tong
    112 schema:givenName David
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610206610.36
    114 rdf:type schema:Person
    115 sg:pub.10.1007/bf01200108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008796567
    116 https://doi.org/10.1007/bf01200108
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bf02099284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010202570
    119 https://doi.org/10.1007/bf02099284
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s00220-002-0743-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007842676
    122 https://doi.org/10.1007/s00220-002-0743-y
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s002200050490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035492641
    125 https://doi.org/10.1007/s002200050490
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1088/1126-6708/1999/05/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000816606
    128 https://doi.org/10.1088/1126-6708/1999/05/006
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1088/1126-6708/1999/09/032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007113443
    131 https://doi.org/10.1088/1126-6708/1999/09/032
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1088/1126-6708/1999/11/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043178979
    134 https://doi.org/10.1088/1126-6708/1999/11/005
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1088/1126-6708/2000/09/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029715969
    137 https://doi.org/10.1088/1126-6708/2000/09/018
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1088/1126-6708/2001/04/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042382506
    140 https://doi.org/10.1088/1126-6708/2001/04/011
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1088/1126-6708/2002/07/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047192457
    143 https://doi.org/10.1088/1126-6708/2002/07/013
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1088/1126-6708/2002/12/073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047709245
    146 https://doi.org/10.1088/1126-6708/2002/12/073
    147 rdf:type schema:CreativeWork
    148 grid-institutes:grid.116068.8 schema:alternateName Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
    149 schema:name Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...