The geometry of D = 11 Killing spinors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-04-23

AUTHORS

Jerome P. Gauntlett, Stathis Pakis

ABSTRACT

We propose a way to classify the local form of all bosonic supersymmetric configurations of D = 11 supergravity, using the differential forms that can be constructed as bi-linears from the Killing spinors. We show that the most general bosonic geometries either have a privileged SU(5) or a (Spin(7)8) × structure, depending on whether the Killing vector constructed from the Killing spinor is timelike or null, respectively. In the time-like case we derive the general local form of the geometry and show that it is almost completely determined by a certain SU(5) structure on the ten-dimensional space orthogonal to the orbits of the Killing vector. We also deduce what further conditions must be imposed in order that the equations of motion are satisfied. We illustrate the formalism with some known solutions and also present some new solutions including a rotating generalisation of the resolved membrane solutions and generalisations of the recently constructed D = 11 Gödel solution. We also prove some general vanishing theorems for compactifications with flux. More... »

PAGES

039

References to SciGraph publications

  • 2003-01. Ricci-Flat Metrics, Harmonic Forms and Brane Resolutions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-11-09. Fivebranes wrapped on SLAG three-cycles and related geometry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-03-26. Maximally supersymmetric solutions of ten- and eleven-dimensional supergravities in JOURNAL OF HIGH ENERGY PHYSICS
  • Journal

    TITLE

    Journal of High Energy Physics

    ISSUE

    04

    VOLUME

    2003

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1088/1126-6708/2003/04/039

    DOI

    http://dx.doi.org/10.1088/1126-6708/2003/04/039

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024400348


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University College London", 
              "id": "https://www.grid.ac/institutes/grid.83440.3b", 
              "name": [
                "Department of Physics, Queen Mary, University of London, Mile End Rd, London E1 4NS, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gauntlett", 
            "givenName": "Jerome P.", 
            "id": "sg:person.01112070520.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112070520.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University College London", 
              "id": "https://www.grid.ac/institutes/grid.83440.3b", 
              "name": [
                "Department of Physics, Queen Mary, University of London, Mile End Rd, London E1 4NS, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pakis", 
            "givenName": "Stathis", 
            "id": "sg:person.014014046037.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014014046037.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0370-2693(00)01330-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001963820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/18/6/309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003070525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(83)90797-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003893126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(83)90797-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003893126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(95)00368-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005220273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.58.025006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007709769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.58.025006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007709769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(03)00049-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008518386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(03)00049-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008518386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(88)90050-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010867182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(87)91272-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(87)91272-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(97)01071-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015377838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.60.106006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021379806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.60.106006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021379806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.63.126001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024221658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.63.126001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024221658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(99)00961-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024514532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/17/15/306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025534004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-002-0730-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027948326", 
              "https://doi.org/10.1007/s00220-002-0730-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/11/018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028826597", 
              "https://doi.org/10.1088/1126-6708/2001/11/018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(95)00280-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029122243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(01)00050-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031375494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(99)00878-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038886435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(96)00367-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042527220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(03)00045-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048488073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(03)00045-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048488073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/03/048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051011460", 
              "https://doi.org/10.1088/1126-6708/2003/03/048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(83)91400-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052114158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(83)91400-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052114158"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-04-23", 
        "datePublishedReg": "2003-04-23", 
        "description": "We propose a way to classify the local form of all bosonic supersymmetric configurations of D = 11 supergravity, using the differential forms that can be constructed as bi-linears from the Killing spinors. We show that the most general bosonic geometries either have a privileged SU(5) or a (Spin(7)8) \u00d7 structure, depending on whether the Killing vector constructed from the Killing spinor is timelike or null, respectively. In the time-like case we derive the general local form of the geometry and show that it is almost completely determined by a certain SU(5) structure on the ten-dimensional space orthogonal to the orbits of the Killing vector. We also deduce what further conditions must be imposed in order that the equations of motion are satisfied. We illustrate the formalism with some known solutions and also present some new solutions including a rotating generalisation of the resolved membrane solutions and generalisations of the recently constructed D = 11 G\u00f6del solution. We also prove some general vanishing theorems for compactifications with flux.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1088/1126-6708/2003/04/039", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "04", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2003"
          }
        ], 
        "name": "The geometry of D = 11 Killing spinors", 
        "pagination": "039", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "743ed6638195d380ab3c860b8c57a8ece937db8113b367729c423d4062eb0cdc"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1088/1126-6708/2003/04/039"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024400348"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1088/1126-6708/2003/04/039", 
          "https://app.dimensions.ai/details/publication/pub.1024400348"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000258.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://iopscience.iop.org/article/10.1088/1126-6708/2003/04/039/meta"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/04/039'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/04/039'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/04/039'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/04/039'


     

    This table displays all metadata directly associated to this object as RDF triples.

    137 TRIPLES      21 PREDICATES      48 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1088/1126-6708/2003/04/039 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nb6801c19bf1e48e3980d6219fac063f3
    4 schema:citation sg:pub.10.1007/s00220-002-0730-3
    5 sg:pub.10.1088/1126-6708/2001/11/018
    6 sg:pub.10.1088/1126-6708/2003/03/048
    7 https://doi.org/10.1016/0003-4916(88)90050-4
    8 https://doi.org/10.1016/0370-2693(83)90797-9
    9 https://doi.org/10.1016/0370-2693(83)91400-4
    10 https://doi.org/10.1016/0370-2693(87)91272-x
    11 https://doi.org/10.1016/0550-3213(95)00280-6
    12 https://doi.org/10.1016/0550-3213(95)00368-3
    13 https://doi.org/10.1016/0550-3213(96)00367-7
    14 https://doi.org/10.1016/s0370-2693(00)01330-7
    15 https://doi.org/10.1016/s0370-2693(97)01071-x
    16 https://doi.org/10.1016/s0370-2693(99)00878-3
    17 https://doi.org/10.1016/s0370-2693(99)00961-2
    18 https://doi.org/10.1016/s0550-3213(01)00050-5
    19 https://doi.org/10.1016/s0550-3213(03)00045-2
    20 https://doi.org/10.1016/s0550-3213(03)00049-x
    21 https://doi.org/10.1088/0264-9381/17/15/306
    22 https://doi.org/10.1088/0264-9381/18/6/309
    23 https://doi.org/10.1103/physrevd.58.025006
    24 https://doi.org/10.1103/physrevd.60.106006
    25 https://doi.org/10.1103/physrevd.63.126001
    26 schema:datePublished 2003-04-23
    27 schema:datePublishedReg 2003-04-23
    28 schema:description We propose a way to classify the local form of all bosonic supersymmetric configurations of D = 11 supergravity, using the differential forms that can be constructed as bi-linears from the Killing spinors. We show that the most general bosonic geometries either have a privileged SU(5) or a (Spin(7)8) × structure, depending on whether the Killing vector constructed from the Killing spinor is timelike or null, respectively. In the time-like case we derive the general local form of the geometry and show that it is almost completely determined by a certain SU(5) structure on the ten-dimensional space orthogonal to the orbits of the Killing vector. We also deduce what further conditions must be imposed in order that the equations of motion are satisfied. We illustrate the formalism with some known solutions and also present some new solutions including a rotating generalisation of the resolved membrane solutions and generalisations of the recently constructed D = 11 Gödel solution. We also prove some general vanishing theorems for compactifications with flux.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N2f927440804a43b9a89a40ba2444b183
    33 Ndeee6438211b47bf880987aa9dcbb8fd
    34 sg:journal.1052482
    35 schema:name The geometry of D = 11 Killing spinors
    36 schema:pagination 039
    37 schema:productId N75f54b894d124eb79ca7488be1170572
    38 Nb65a23ce886747aeb3337db66271c2f8
    39 Nbcb47dce858a4229a55977f0b749b3ba
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024400348
    41 https://doi.org/10.1088/1126-6708/2003/04/039
    42 schema:sdDatePublished 2019-04-10T17:06
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N3cfdc743f4924c7ba17a6487cd154d54
    45 schema:url http://iopscience.iop.org/article/10.1088/1126-6708/2003/04/039/meta
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N2f927440804a43b9a89a40ba2444b183 schema:volumeNumber 2003
    50 rdf:type schema:PublicationVolume
    51 N3cfdc743f4924c7ba17a6487cd154d54 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N5a63d37e6ca540b191a39a6f382194aa rdf:first sg:person.014014046037.27
    54 rdf:rest rdf:nil
    55 N75f54b894d124eb79ca7488be1170572 schema:name readcube_id
    56 schema:value 743ed6638195d380ab3c860b8c57a8ece937db8113b367729c423d4062eb0cdc
    57 rdf:type schema:PropertyValue
    58 Nb65a23ce886747aeb3337db66271c2f8 schema:name doi
    59 schema:value 10.1088/1126-6708/2003/04/039
    60 rdf:type schema:PropertyValue
    61 Nb6801c19bf1e48e3980d6219fac063f3 rdf:first sg:person.01112070520.41
    62 rdf:rest N5a63d37e6ca540b191a39a6f382194aa
    63 Nbcb47dce858a4229a55977f0b749b3ba schema:name dimensions_id
    64 schema:value pub.1024400348
    65 rdf:type schema:PropertyValue
    66 Ndeee6438211b47bf880987aa9dcbb8fd schema:issueNumber 04
    67 rdf:type schema:PublicationIssue
    68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Mathematical Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Pure Mathematics
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1052482 schema:issn 1029-8479
    75 1126-6708
    76 schema:name Journal of High Energy Physics
    77 rdf:type schema:Periodical
    78 sg:person.01112070520.41 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
    79 schema:familyName Gauntlett
    80 schema:givenName Jerome P.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112070520.41
    82 rdf:type schema:Person
    83 sg:person.014014046037.27 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
    84 schema:familyName Pakis
    85 schema:givenName Stathis
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014014046037.27
    87 rdf:type schema:Person
    88 sg:pub.10.1007/s00220-002-0730-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027948326
    89 https://doi.org/10.1007/s00220-002-0730-3
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1088/1126-6708/2001/11/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028826597
    92 https://doi.org/10.1088/1126-6708/2001/11/018
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1088/1126-6708/2003/03/048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051011460
    95 https://doi.org/10.1088/1126-6708/2003/03/048
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/0003-4916(88)90050-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010867182
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/0370-2693(83)90797-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003893126
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/0370-2693(83)91400-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052114158
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/0370-2693(87)91272-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840184
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/0550-3213(95)00280-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029122243
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/0550-3213(95)00368-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005220273
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/0550-3213(96)00367-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042527220
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/s0370-2693(00)01330-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001963820
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/s0370-2693(97)01071-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015377838
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/s0370-2693(99)00878-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038886435
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/s0370-2693(99)00961-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024514532
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s0550-3213(01)00050-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031375494
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/s0550-3213(03)00045-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048488073
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/s0550-3213(03)00049-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008518386
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1088/0264-9381/17/15/306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025534004
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1088/0264-9381/18/6/309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003070525
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrevd.58.025006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007709769
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrevd.60.106006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021379806
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrevd.63.126001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024221658
    134 rdf:type schema:CreativeWork
    135 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
    136 schema:name Department of Physics, Queen Mary, University of London, Mile End Rd, London E1 4NS, UK
    137 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...