Quiver theories, soliton spectra and Picard-Lefschetz transformations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-02-27

AUTHORS

Bo Feng, Amihay Hanany, Yang Hui He, Amer Iqbal

ABSTRACT

Quiver theories arising on D3-branes at orbifold and del Pezzo singularities are studied using mirror symmetry. We show that the quivers for the orbifold theories are given by the soliton spectrum of massive 2d = 2 theory with weighted projective spaces as target. For the theories obtained from the del Pezzo singularities we show that the geometry of the mirror manifold gives quiver theories related to each other by Picard-Lefschetz transformations, a subset of which are simple Seiberg duals. We also address how one indeed derives Seiberg duality on the matter content from such geometrical transitions and how one could go beyond and obtain certain ``fractional Seiberg duals.'' Moreover, from the mirror geometry for the del Pezzos arise certain Diophantine equations which classify all quivers related by Picard-Lefschetz. Some of these Diophantine equations can also be obtained from the classification results of Cecotti-Vafa for the 2d = 2 theories. More... »

PAGES

056

References to SciGraph publications

  • 2000-01-27. Del Pezzo surfaces and affine 7-brane backgrounds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-04-04. Quiver Theories from D6-branes via Mirror Symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-12-30. Toric duality as Seiberg duality and brane diamonds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-08-17. Phase structure of D-brane gauge theories and toric duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-07-07. Fractional branes on a non-compact orbifold in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-01-15. Phases of supersymmetric D-branes on Kähler manifolds and the McKay correspondence in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-02-17. Non-abelian finite gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-12-03. Toric duality is Seiberg duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-02-14. A monograph on the classification of the discrete subgroups of SU(4) in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-12-27. Symmetries of Toric Duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 1993-12. On classification ofN=2 supersymmetric theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2000-03-31. Stable non-BPS states in F-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1088/1126-6708/2003/02/056

    DOI

    http://dx.doi.org/10.1088/1126-6708/2003/02/056

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021375019


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Center for Theoretical Physics, Department of Physics, MIT, Cambridge, MA 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "Bo", 
            "id": "sg:person.0614443717.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614443717.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Center for Theoretical Physics, Department of Physics, MIT, Cambridge, MA 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Center for Theoretical Physics, Department of Physics, MIT, Cambridge, MA 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Yang Hui", 
            "id": "sg:person.010540777615.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010540777615.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The University of Texas at Austin", 
              "id": "https://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Theory Group, Department of Physics, University of Texas at Austin, Austin, TX 78712, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iqbal", 
            "givenName": "Amer", 
            "id": "sg:person.013146472401.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013146472401.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0550-3213(02)00078-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001677489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(93)90033-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004765127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(93)90033-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004765127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/12/035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007275558", 
              "https://doi.org/10.1088/1126-6708/2001/12/035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/08/040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008510756", 
              "https://doi.org/10.1088/1126-6708/2001/08/040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/02/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011039168", 
              "https://doi.org/10.1088/1126-6708/1999/02/013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/02/027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012295733", 
              "https://doi.org/10.1088/1126-6708/2001/02/027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/07/007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014693691", 
              "https://doi.org/10.1088/1126-6708/2001/07/007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)00304-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016208567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)00517-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016900381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(00)00699-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018210546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(02)00762-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019013456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(00)00655-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019859535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02096804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020609627", 
              "https://doi.org/10.1007/bf02096804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02096804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020609627", 
              "https://doi.org/10.1007/bf02096804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/01/018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021289806", 
              "https://doi.org/10.1088/1126-6708/2001/01/018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/04/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023292462", 
              "https://doi.org/10.1088/1126-6708/2002/04/009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(96)00434-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024268892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(01)00228-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024641922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/03/036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024933949", 
              "https://doi.org/10.1088/1126-6708/2000/03/036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.55.6382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027701370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.55.6382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027701370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(01)00296-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027856859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031433556", 
              "https://doi.org/10.1088/1126-6708/2002/12/076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(99)00646-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033701969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/12/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040554299", 
              "https://doi.org/10.1088/1126-6708/2001/12/001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(98)00426-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042398666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(98)00495-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048631808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/01/043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051949842", 
              "https://doi.org/10.1088/1126-6708/2000/01/043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.55.6382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060584577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.55.6382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060584577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1999.v3.n6.a6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2001.v5.n4.a5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2002.v6.n1.a3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457050"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-02-27", 
        "datePublishedReg": "2003-02-27", 
        "description": "Quiver theories arising on D3-branes at orbifold and del Pezzo singularities are studied using mirror symmetry. We show that the quivers for the orbifold theories are given by the soliton spectrum of massive 2d = 2 theory with weighted projective spaces as target. For the theories obtained from the del Pezzo singularities we show that the geometry of the mirror manifold gives quiver theories related to each other by Picard-Lefschetz transformations, a subset of which are simple Seiberg duals. We also address how one indeed derives Seiberg duality on the matter content from such geometrical transitions and how one could go beyond and obtain certain ``fractional Seiberg duals.'' Moreover, from the mirror geometry for the del Pezzos arise certain Diophantine equations which classify all quivers related by Picard-Lefschetz. Some of these Diophantine equations can also be obtained from the classification results of Cecotti-Vafa for the 2d = 2 theories.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1088/1126-6708/2003/02/056", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "02", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2003"
          }
        ], 
        "name": "Quiver theories, soliton spectra and Picard-Lefschetz transformations", 
        "pagination": "056", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "65d7590fa2455274f2d8e445195be0495399972611558e6e602f3f9ddce2cdeb"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1088/1126-6708/2003/02/056"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021375019"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1088/1126-6708/2003/02/056", 
          "https://app.dimensions.ai/details/publication/pub.1021375019"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000256.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://iopscience.iop.org/article/10.1088/1126-6708/2003/02/056/meta"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/02/056'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/02/056'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/02/056'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2003/02/056'


     

    This table displays all metadata directly associated to this object as RDF triples.

    187 TRIPLES      21 PREDICATES      56 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1088/1126-6708/2003/02/056 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf137dd27bd14421095b92e56ade1dc1b
    4 schema:citation sg:pub.10.1007/bf02096804
    5 sg:pub.10.1088/1126-6708/1999/02/013
    6 sg:pub.10.1088/1126-6708/2000/01/043
    7 sg:pub.10.1088/1126-6708/2000/03/036
    8 sg:pub.10.1088/1126-6708/2001/01/018
    9 sg:pub.10.1088/1126-6708/2001/02/027
    10 sg:pub.10.1088/1126-6708/2001/07/007
    11 sg:pub.10.1088/1126-6708/2001/08/040
    12 sg:pub.10.1088/1126-6708/2001/12/001
    13 sg:pub.10.1088/1126-6708/2001/12/035
    14 sg:pub.10.1088/1126-6708/2002/04/009
    15 sg:pub.10.1088/1126-6708/2002/12/076
    16 https://doi.org/10.1016/0550-3213(93)90033-l
    17 https://doi.org/10.1016/0550-3213(96)00434-8
    18 https://doi.org/10.1016/s0550-3213(00)00655-6
    19 https://doi.org/10.1016/s0550-3213(00)00699-4
    20 https://doi.org/10.1016/s0550-3213(01)00228-0
    21 https://doi.org/10.1016/s0550-3213(01)00296-6
    22 https://doi.org/10.1016/s0550-3213(02)00078-0
    23 https://doi.org/10.1016/s0550-3213(02)00762-9
    24 https://doi.org/10.1016/s0550-3213(97)00304-0
    25 https://doi.org/10.1016/s0550-3213(97)00517-8
    26 https://doi.org/10.1016/s0550-3213(98)00426-x
    27 https://doi.org/10.1016/s0550-3213(98)00495-7
    28 https://doi.org/10.1016/s0550-3213(99)00646-x
    29 https://doi.org/10.1103/physrevb.55.6382
    30 https://doi.org/10.1103/physrevd.55.6382
    31 https://doi.org/10.4310/atmp.1999.v3.n6.a6
    32 https://doi.org/10.4310/atmp.2001.v5.n4.a5
    33 https://doi.org/10.4310/atmp.2002.v6.n1.a3
    34 schema:datePublished 2003-02-27
    35 schema:datePublishedReg 2003-02-27
    36 schema:description Quiver theories arising on D3-branes at orbifold and del Pezzo singularities are studied using mirror symmetry. We show that the quivers for the orbifold theories are given by the soliton spectrum of massive 2d = 2 theory with weighted projective spaces as target. For the theories obtained from the del Pezzo singularities we show that the geometry of the mirror manifold gives quiver theories related to each other by Picard-Lefschetz transformations, a subset of which are simple Seiberg duals. We also address how one indeed derives Seiberg duality on the matter content from such geometrical transitions and how one could go beyond and obtain certain ``fractional Seiberg duals.'' Moreover, from the mirror geometry for the del Pezzos arise certain Diophantine equations which classify all quivers related by Picard-Lefschetz. Some of these Diophantine equations can also be obtained from the classification results of Cecotti-Vafa for the 2d = 2 theories.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree true
    40 schema:isPartOf Nddf4f3b2e8f6467a90c7401b2e5be289
    41 Nf11b39b422bd4da5b49c6e34eb07e29c
    42 sg:journal.1052482
    43 schema:name Quiver theories, soliton spectra and Picard-Lefschetz transformations
    44 schema:pagination 056
    45 schema:productId N2cb6ef7cda6546da81ad5e11a2c5b160
    46 N34c585a0ce514e959a0f718634b167a6
    47 N6171983ae0ac47e487729020a5b42c99
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021375019
    49 https://doi.org/10.1088/1126-6708/2003/02/056
    50 schema:sdDatePublished 2019-04-11T01:33
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Nd9d0888df19f483796795d38c18a947c
    53 schema:url http://iopscience.iop.org/article/10.1088/1126-6708/2003/02/056/meta
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N2cb6ef7cda6546da81ad5e11a2c5b160 schema:name doi
    58 schema:value 10.1088/1126-6708/2003/02/056
    59 rdf:type schema:PropertyValue
    60 N311c7b9ea32c450a93745ea670bca029 rdf:first sg:person.013146472401.44
    61 rdf:rest rdf:nil
    62 N34c585a0ce514e959a0f718634b167a6 schema:name dimensions_id
    63 schema:value pub.1021375019
    64 rdf:type schema:PropertyValue
    65 N6171983ae0ac47e487729020a5b42c99 schema:name readcube_id
    66 schema:value 65d7590fa2455274f2d8e445195be0495399972611558e6e602f3f9ddce2cdeb
    67 rdf:type schema:PropertyValue
    68 N7777139809d340268b8e5e94f18121f8 rdf:first sg:person.012155553275.80
    69 rdf:rest N99b8585483e0480599e0c6b0d6ca898d
    70 N99b8585483e0480599e0c6b0d6ca898d rdf:first sg:person.010540777615.39
    71 rdf:rest N311c7b9ea32c450a93745ea670bca029
    72 Nd9d0888df19f483796795d38c18a947c schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Nddf4f3b2e8f6467a90c7401b2e5be289 schema:issueNumber 02
    75 rdf:type schema:PublicationIssue
    76 Nf11b39b422bd4da5b49c6e34eb07e29c schema:volumeNumber 2003
    77 rdf:type schema:PublicationVolume
    78 Nf137dd27bd14421095b92e56ade1dc1b rdf:first sg:person.0614443717.35
    79 rdf:rest N7777139809d340268b8e5e94f18121f8
    80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Mathematical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Pure Mathematics
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1052482 schema:issn 1029-8479
    87 1126-6708
    88 schema:name Journal of High Energy Physics
    89 rdf:type schema:Periodical
    90 sg:person.010540777615.39 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    91 schema:familyName He
    92 schema:givenName Yang Hui
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010540777615.39
    94 rdf:type schema:Person
    95 sg:person.012155553275.80 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    96 schema:familyName Hanany
    97 schema:givenName Amihay
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    99 rdf:type schema:Person
    100 sg:person.013146472401.44 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
    101 schema:familyName Iqbal
    102 schema:givenName Amer
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013146472401.44
    104 rdf:type schema:Person
    105 sg:person.0614443717.35 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    106 schema:familyName Feng
    107 schema:givenName Bo
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614443717.35
    109 rdf:type schema:Person
    110 sg:pub.10.1007/bf02096804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020609627
    111 https://doi.org/10.1007/bf02096804
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1088/1126-6708/1999/02/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011039168
    114 https://doi.org/10.1088/1126-6708/1999/02/013
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1088/1126-6708/2000/01/043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051949842
    117 https://doi.org/10.1088/1126-6708/2000/01/043
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1088/1126-6708/2000/03/036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024933949
    120 https://doi.org/10.1088/1126-6708/2000/03/036
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1088/1126-6708/2001/01/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021289806
    123 https://doi.org/10.1088/1126-6708/2001/01/018
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1088/1126-6708/2001/02/027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012295733
    126 https://doi.org/10.1088/1126-6708/2001/02/027
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1088/1126-6708/2001/07/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014693691
    129 https://doi.org/10.1088/1126-6708/2001/07/007
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1088/1126-6708/2001/08/040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008510756
    132 https://doi.org/10.1088/1126-6708/2001/08/040
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1088/1126-6708/2001/12/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040554299
    135 https://doi.org/10.1088/1126-6708/2001/12/001
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1088/1126-6708/2001/12/035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007275558
    138 https://doi.org/10.1088/1126-6708/2001/12/035
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1088/1126-6708/2002/04/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023292462
    141 https://doi.org/10.1088/1126-6708/2002/04/009
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1088/1126-6708/2002/12/076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031433556
    144 https://doi.org/10.1088/1126-6708/2002/12/076
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/0550-3213(93)90033-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1004765127
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/0550-3213(96)00434-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024268892
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/s0550-3213(00)00655-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019859535
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/s0550-3213(00)00699-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018210546
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/s0550-3213(01)00228-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024641922
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/s0550-3213(01)00296-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027856859
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/s0550-3213(02)00078-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001677489
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/s0550-3213(02)00762-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019013456
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/s0550-3213(97)00304-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016208567
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/s0550-3213(97)00517-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016900381
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/s0550-3213(98)00426-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042398666
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/s0550-3213(98)00495-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048631808
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/s0550-3213(99)00646-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033701969
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1103/physrevb.55.6382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584577
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1103/physrevd.55.6382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027701370
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.4310/atmp.1999.v3.n6.a6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456978
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.4310/atmp.2001.v5.n4.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457035
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.4310/atmp.2002.v6.n1.a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457050
    181 rdf:type schema:CreativeWork
    182 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    183 schema:name Center for Theoretical Physics, Department of Physics, MIT, Cambridge, MA 02139, USA
    184 rdf:type schema:Organization
    185 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
    186 schema:name Theory Group, Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
    187 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...