Reverse geometric engineering of singularities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-04-29

AUTHORS

David Berenstein

ABSTRACT

One can geometrically engineer supersymmetric field theories theories by placing D-branes at or near singularities. The opposite process is described, where one can reconstruct the singularities from quiver theories. The description is in terms of a non-commutative quiver algebra which is constructed from the quiver diagram and the superpotential. The center of this non-commutative algebra is a commutative algebra, which is the ring of holomorphic functions on a variety V. If certain algebraic conditions are met, then the reverse geometric engineering produces V as the geometry that D-branes probe. It is also argued that the identification of V is invariant under Seiberg dualities. More... »

PAGES

052

Identifiers

URI

http://scigraph.springernature.com/pub.10.1088/1126-6708/2002/04/052

DOI

http://dx.doi.org/10.1088/1126-6708/2002/04/052

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003711632


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "School of Natural Sciences, Institue of Advanced Study, Einstein Drive, NJ 08540, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berenstein", 
        "givenName": "David", 
        "id": "sg:person.010670374376.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010670374376.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0550-3213(02)00078-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001677489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(01)00005-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004300536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00654-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007002030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1999/09/032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007113443", 
          "https://doi.org/10.1088/1126-6708/1999/09/032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2001/12/035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007275558", 
          "https://doi.org/10.1088/1126-6708/2001/12/035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(00)01124-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008048330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2001/08/040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008510756", 
          "https://doi.org/10.1088/1126-6708/2001/08/040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1999/12/022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009844079", 
          "https://doi.org/10.1088/1126-6708/1999/12/022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(00)00394-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009983616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2001/06/030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011557050", 
          "https://doi.org/10.1088/1126-6708/2001/06/030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/01/031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016023452", 
          "https://doi.org/10.1088/1126-6708/2002/01/031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(00)00699-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018210546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(01)00228-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024641922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(01)00296-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027856859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00261-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029767902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2001/11/060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039148636", 
          "https://doi.org/10.1088/1126-6708/2001/11/060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2001/12/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040554299", 
          "https://doi.org/10.1088/1126-6708/2001/12/001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(94)00023-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042221080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.55.5112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043426195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.55.5112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043426195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/01/038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046108330", 
          "https://doi.org/10.1088/1126-6708/2000/01/038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/08/052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047227014", 
          "https://doi.org/10.1088/1126-6708/2000/08/052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.1997.v1.n1.a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072456869"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-04-29", 
    "datePublishedReg": "2002-04-29", 
    "description": "One can geometrically engineer supersymmetric field theories theories by placing D-branes at or near singularities. The opposite process is described, where one can reconstruct the singularities from quiver theories. The description is in terms of a non-commutative quiver algebra which is constructed from the quiver diagram and the superpotential. The center of this non-commutative algebra is a commutative algebra, which is the ring of holomorphic functions on a variety V. If certain algebraic conditions are met, then the reverse geometric engineering produces V as the geometry that D-branes probe. It is also argued that the identification of V is invariant under Seiberg dualities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1088/1126-6708/2002/04/052", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "04", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2002"
      }
    ], 
    "name": "Reverse geometric engineering of singularities", 
    "pagination": "052", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "11ae3485fd90cc88630a710ec28b8fd162e6cdce9b23858375222d82b03e0b90"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1088/1126-6708/2002/04/052"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003711632"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1088/1126-6708/2002/04/052", 
      "https://app.dimensions.ai/details/publication/pub.1003711632"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000245.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://iopscience.iop.org/article/10.1088/1126-6708/2002/04/052/meta"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2002/04/052'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2002/04/052'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2002/04/052'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2002/04/052'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      48 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1088/1126-6708/2002/04/052 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb610b4a531894f5595c42ca1a71e1096
4 schema:citation sg:pub.10.1088/1126-6708/1999/09/032
5 sg:pub.10.1088/1126-6708/1999/12/022
6 sg:pub.10.1088/1126-6708/2000/01/038
7 sg:pub.10.1088/1126-6708/2000/08/052
8 sg:pub.10.1088/1126-6708/2001/06/030
9 sg:pub.10.1088/1126-6708/2001/08/040
10 sg:pub.10.1088/1126-6708/2001/11/060
11 sg:pub.10.1088/1126-6708/2001/12/001
12 sg:pub.10.1088/1126-6708/2001/12/035
13 sg:pub.10.1088/1126-6708/2002/01/031
14 https://doi.org/10.1016/0550-3213(94)00023-8
15 https://doi.org/10.1016/0550-3213(95)00261-p
16 https://doi.org/10.1016/s0370-2693(00)01124-2
17 https://doi.org/10.1016/s0370-2693(01)00005-3
18 https://doi.org/10.1016/s0550-3213(00)00394-1
19 https://doi.org/10.1016/s0550-3213(00)00699-4
20 https://doi.org/10.1016/s0550-3213(01)00228-0
21 https://doi.org/10.1016/s0550-3213(01)00296-6
22 https://doi.org/10.1016/s0550-3213(02)00078-0
23 https://doi.org/10.1016/s0550-3213(98)00654-3
24 https://doi.org/10.1103/physrevd.55.5112
25 https://doi.org/10.4310/atmp.1997.v1.n1.a2
26 schema:datePublished 2002-04-29
27 schema:datePublishedReg 2002-04-29
28 schema:description One can geometrically engineer supersymmetric field theories theories by placing D-branes at or near singularities. The opposite process is described, where one can reconstruct the singularities from quiver theories. The description is in terms of a non-commutative quiver algebra which is constructed from the quiver diagram and the superpotential. The center of this non-commutative algebra is a commutative algebra, which is the ring of holomorphic functions on a variety V. If certain algebraic conditions are met, then the reverse geometric engineering produces V as the geometry that D-branes probe. It is also argued that the identification of V is invariant under Seiberg dualities.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N08c5e7d05adb4d64806d040f23486855
33 Nbb030a9e9e48469d9fa0045623d2a841
34 sg:journal.1052482
35 schema:name Reverse geometric engineering of singularities
36 schema:pagination 052
37 schema:productId N459459ca90024e9086ef267431baccac
38 N4d7f5075aa7748de89d31de089d3b445
39 Nc0cad9b415be4673b6b3e77a65e8eb5f
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003711632
41 https://doi.org/10.1088/1126-6708/2002/04/052
42 schema:sdDatePublished 2019-04-10T17:05
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N44ecb7a71ddd4a5fbf966e8141f8ac81
45 schema:url http://iopscience.iop.org/article/10.1088/1126-6708/2002/04/052/meta
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N08c5e7d05adb4d64806d040f23486855 schema:issueNumber 04
50 rdf:type schema:PublicationIssue
51 N44ecb7a71ddd4a5fbf966e8141f8ac81 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N459459ca90024e9086ef267431baccac schema:name readcube_id
54 schema:value 11ae3485fd90cc88630a710ec28b8fd162e6cdce9b23858375222d82b03e0b90
55 rdf:type schema:PropertyValue
56 N4d7f5075aa7748de89d31de089d3b445 schema:name dimensions_id
57 schema:value pub.1003711632
58 rdf:type schema:PropertyValue
59 Nb610b4a531894f5595c42ca1a71e1096 rdf:first sg:person.010670374376.11
60 rdf:rest rdf:nil
61 Nbb030a9e9e48469d9fa0045623d2a841 schema:volumeNumber 2002
62 rdf:type schema:PublicationVolume
63 Nc0cad9b415be4673b6b3e77a65e8eb5f schema:name doi
64 schema:value 10.1088/1126-6708/2002/04/052
65 rdf:type schema:PropertyValue
66 Nd299cb2d731146ba96173cab67eced53 schema:name School of Natural Sciences, Institue of Advanced Study, Einstein Drive, NJ 08540, USA
67 rdf:type schema:Organization
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
72 schema:name Pure Mathematics
73 rdf:type schema:DefinedTerm
74 sg:journal.1052482 schema:issn 1029-8479
75 1126-6708
76 schema:name Journal of High Energy Physics
77 rdf:type schema:Periodical
78 sg:person.010670374376.11 schema:affiliation Nd299cb2d731146ba96173cab67eced53
79 schema:familyName Berenstein
80 schema:givenName David
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010670374376.11
82 rdf:type schema:Person
83 sg:pub.10.1088/1126-6708/1999/09/032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007113443
84 https://doi.org/10.1088/1126-6708/1999/09/032
85 rdf:type schema:CreativeWork
86 sg:pub.10.1088/1126-6708/1999/12/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009844079
87 https://doi.org/10.1088/1126-6708/1999/12/022
88 rdf:type schema:CreativeWork
89 sg:pub.10.1088/1126-6708/2000/01/038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046108330
90 https://doi.org/10.1088/1126-6708/2000/01/038
91 rdf:type schema:CreativeWork
92 sg:pub.10.1088/1126-6708/2000/08/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047227014
93 https://doi.org/10.1088/1126-6708/2000/08/052
94 rdf:type schema:CreativeWork
95 sg:pub.10.1088/1126-6708/2001/06/030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011557050
96 https://doi.org/10.1088/1126-6708/2001/06/030
97 rdf:type schema:CreativeWork
98 sg:pub.10.1088/1126-6708/2001/08/040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008510756
99 https://doi.org/10.1088/1126-6708/2001/08/040
100 rdf:type schema:CreativeWork
101 sg:pub.10.1088/1126-6708/2001/11/060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039148636
102 https://doi.org/10.1088/1126-6708/2001/11/060
103 rdf:type schema:CreativeWork
104 sg:pub.10.1088/1126-6708/2001/12/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040554299
105 https://doi.org/10.1088/1126-6708/2001/12/001
106 rdf:type schema:CreativeWork
107 sg:pub.10.1088/1126-6708/2001/12/035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007275558
108 https://doi.org/10.1088/1126-6708/2001/12/035
109 rdf:type schema:CreativeWork
110 sg:pub.10.1088/1126-6708/2002/01/031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016023452
111 https://doi.org/10.1088/1126-6708/2002/01/031
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0550-3213(94)00023-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042221080
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0550-3213(95)00261-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1029767902
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0370-2693(00)01124-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008048330
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0370-2693(01)00005-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004300536
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0550-3213(00)00394-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009983616
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0550-3213(00)00699-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018210546
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0550-3213(01)00228-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024641922
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0550-3213(01)00296-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027856859
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0550-3213(02)00078-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001677489
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0550-3213(98)00654-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007002030
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevd.55.5112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043426195
134 rdf:type schema:CreativeWork
135 https://doi.org/10.4310/atmp.1997.v1.n1.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456869
136 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...