Phases of supersymmetric D-branes on Kähler manifolds and the McKay correspondence View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-01-15

AUTHORS

Peter Mayr

ABSTRACT

We study the topological zero mode sector of type-II strings on a Kähler manifold X in the presence of boundaries. We construct two finite bases, in a sense bosonic and fermionic, that generate the topological sector of the Hilbert space with boundaries. The fermionic basis localizes on compact submanifolds in X. A variation of the FI terms interpolates between the description of these ground states in terms of the ring of chiral fields at the boundary at small volume and helices of exceptional sheaves at large volume, respectively. The identification of the bosonic/fermionic basis with the dual bases for the non-compact/compact K-theory group on X gives a natural explanation of the McKay correspondence in terms of a linear sigma model and suggests a simple generalization of McKay to singular resolutions. The construction provides also a very effective way to describe D-brane states on generic, compact Calabi-Yau manifolds and allows to recover detailed information on the moduli space, such as monodromies and analytic continuation matrices, from the group theoretical data of a simple orbifold. More... »

PAGES

018

Identifiers

URI

http://scigraph.springernature.com/pub.10.1088/1126-6708/2001/01/018

DOI

http://dx.doi.org/10.1088/1126-6708/2001/01/018

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021289806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Organization for Nuclear Research", 
          "id": "https://www.grid.ac/institutes/grid.9132.9", 
          "name": [
            "CERN Theory Division, CH-1211 Geneva 23, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mayr", 
        "givenName": "Peter", 
        "id": "sg:person.07754313621.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07754313621.16"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-01-15", 
    "datePublishedReg": "2001-01-15", 
    "description": "We study the topological zero mode sector of type-II strings on a K\u00e4hler manifold X in the presence of boundaries. We construct two finite bases, in a sense bosonic and fermionic, that generate the topological sector of the Hilbert space with boundaries. The fermionic basis localizes on compact submanifolds in X. A variation of the FI terms interpolates between the description of these ground states in terms of the ring of chiral fields at the boundary at small volume and helices of exceptional sheaves at large volume, respectively. The identification of the bosonic/fermionic basis with the dual bases for the non-compact/compact K-theory group on X gives a natural explanation of the McKay correspondence in terms of a linear sigma model and suggests a simple generalization of McKay to singular resolutions. The construction provides also a very effective way to describe D-brane states on generic, compact Calabi-Yau manifolds and allows to recover detailed information on the moduli space, such as monodromies and analytic continuation matrices, from the group theoretical data of a simple orbifold.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1088/1126-6708/2001/01/018", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "01", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2001"
      }
    ], 
    "name": "Phases of supersymmetric D-branes on K\u00e4hler manifolds and the McKay correspondence", 
    "pagination": "018", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "656f63013ceec942269d89d47e12f303ee2516f61647dbbcacbf6d70dacfaab6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1088/1126-6708/2001/01/018"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021289806"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1088/1126-6708/2001/01/018", 
      "https://app.dimensions.ai/details/publication/pub.1021289806"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000036.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://iopscience.iop.org/article/10.1088/1126-6708/2001/01/018/meta"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2001/01/018'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2001/01/018'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2001/01/018'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/2001/01/018'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      26 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1088/1126-6708/2001/01/018 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0814fbd562b64b35a6ca03e089f40496
4 schema:datePublished 2001-01-15
5 schema:datePublishedReg 2001-01-15
6 schema:description We study the topological zero mode sector of type-II strings on a Kähler manifold X in the presence of boundaries. We construct two finite bases, in a sense bosonic and fermionic, that generate the topological sector of the Hilbert space with boundaries. The fermionic basis localizes on compact submanifolds in X. A variation of the FI terms interpolates between the description of these ground states in terms of the ring of chiral fields at the boundary at small volume and helices of exceptional sheaves at large volume, respectively. The identification of the bosonic/fermionic basis with the dual bases for the non-compact/compact K-theory group on X gives a natural explanation of the McKay correspondence in terms of a linear sigma model and suggests a simple generalization of McKay to singular resolutions. The construction provides also a very effective way to describe D-brane states on generic, compact Calabi-Yau manifolds and allows to recover detailed information on the moduli space, such as monodromies and analytic continuation matrices, from the group theoretical data of a simple orbifold.
7 schema:genre non_research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N595bab8271da4ee89553b18275b1b436
11 N7d917905a0be47f5a2893bc05c58b029
12 sg:journal.1052482
13 schema:name Phases of supersymmetric D-branes on Kähler manifolds and the McKay correspondence
14 schema:pagination 018
15 schema:productId N5fa69519900746a5ace119e758b027f9
16 N9318a7f8515f4c7cba059c3c47cb9306
17 Nb9bf89ef7b794f96b097c2900d02785f
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021289806
19 https://doi.org/10.1088/1126-6708/2001/01/018
20 schema:sdDatePublished 2019-04-10T15:17
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N83d7caabab66484990e6999a6967d43c
23 schema:url http://iopscience.iop.org/article/10.1088/1126-6708/2001/01/018/meta
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0814fbd562b64b35a6ca03e089f40496 rdf:first sg:person.07754313621.16
28 rdf:rest rdf:nil
29 N595bab8271da4ee89553b18275b1b436 schema:volumeNumber 2001
30 rdf:type schema:PublicationVolume
31 N5fa69519900746a5ace119e758b027f9 schema:name dimensions_id
32 schema:value pub.1021289806
33 rdf:type schema:PropertyValue
34 N7d917905a0be47f5a2893bc05c58b029 schema:issueNumber 01
35 rdf:type schema:PublicationIssue
36 N83d7caabab66484990e6999a6967d43c schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N9318a7f8515f4c7cba059c3c47cb9306 schema:name readcube_id
39 schema:value 656f63013ceec942269d89d47e12f303ee2516f61647dbbcacbf6d70dacfaab6
40 rdf:type schema:PropertyValue
41 Nb9bf89ef7b794f96b097c2900d02785f schema:name doi
42 schema:value 10.1088/1126-6708/2001/01/018
43 rdf:type schema:PropertyValue
44 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
45 schema:name Mathematical Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
48 schema:name Pure Mathematics
49 rdf:type schema:DefinedTerm
50 sg:journal.1052482 schema:issn 1029-8479
51 1126-6708
52 schema:name Journal of High Energy Physics
53 rdf:type schema:Periodical
54 sg:person.07754313621.16 schema:affiliation https://www.grid.ac/institutes/grid.9132.9
55 schema:familyName Mayr
56 schema:givenName Peter
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07754313621.16
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.9132.9 schema:alternateName European Organization for Nuclear Research
60 schema:name CERN Theory Division, CH-1211 Geneva 23, Switzerland
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...