Dn quivers from branes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1998-12-15

AUTHORS

Anton Kapustin

ABSTRACT

D-branes can end on orbifold planes if the action of the orbifold group includes (−1)FL. We consider configurations of D-branes ending on such orbifolds and study the low-energy theory on their worldvolume. We apply our results to gauge theories with eight supercharges in three and four dimensions. We explain how mirror symmetry for N = 4 d = 3 gauge theories with gauge group Sp(k) and matter in the antisymmetric tensor and fundamental representations follows from S-duality of IIB string theory. We argue that some of these theories have hidden Fayet-Iliopoulos deformations, not visible classically. We also study a class of finite N = 2 d = 4 theories (so-called Dn quiver theories) and find their exact solution. The integrable model corresponding to the exact solution is a Hitchin system on an orbifold Riemann surface. We also give a simple derivation of the S-duality group of these theories based on their relationship to SO(2n) instantons on R2 × T2. More... »

PAGES

015

Identifiers

URI

http://scigraph.springernature.com/pub.10.1088/1126-6708/1998/12/015

DOI

http://dx.doi.org/10.1088/1126-6708/1998/12/015

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027763459


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA", 
          "id": "http://www.grid.ac/institutes/grid.78989.37", 
          "name": [
            "School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kapustin", 
        "givenName": "Anton", 
        "id": "sg:person.013431107507.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013431107507.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-12-15", 
    "datePublishedReg": "1998-12-15", 
    "description": "D-branes can end on orbifold planes if the action of the orbifold group includes (\u22121)FL. We consider configurations of D-branes ending on such orbifolds and study the low-energy theory on their worldvolume. We apply our results to gauge theories with eight supercharges in three and four dimensions. We explain how mirror symmetry for N = 4 d = 3 gauge theories with gauge group Sp(k) and matter in the antisymmetric tensor and fundamental representations follows from S-duality of IIB string theory. We argue that some of these theories have hidden Fayet-Iliopoulos deformations, not visible classically. We also study a class of finite N = 2 d = 4 theories (so-called Dn quiver theories) and find their exact solution. The integrable model corresponding to the exact solution is a Hitchin system on an orbifold Riemann surface. We also give a simple derivation of the S-duality group of these theories based on their relationship to SO(2n) instantons on R2 \u00d7 T2.", 
    "genre": "article", 
    "id": "sg:pub.10.1088/1126-6708/1998/12/015", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1998"
      }
    ], 
    "keywords": [
      "exact solution", 
      "orbifold Riemann surface", 
      "IIB string theory", 
      "integrable models", 
      "Hitchin system", 
      "string theory", 
      "Riemann surface", 
      "duality group", 
      "orbifold planes", 
      "orbifold group", 
      "finite N", 
      "gauge theory", 
      "antisymmetric tensor", 
      "fundamental representation", 
      "gauge group", 
      "low-energy theory", 
      "mirror symmetry", 
      "simple derivation", 
      "branes", 
      "theory", 
      "supercharges", 
      "quivers", 
      "orbifolds", 
      "worldvolume", 
      "solution", 
      "instantons", 
      "duality", 
      "derivation", 
      "symmetry", 
      "tensor", 
      "class", 
      "representation", 
      "model", 
      "dimensions", 
      "system", 
      "plane", 
      "configuration", 
      "results", 
      "deformation", 
      "action", 
      "relationship", 
      "group", 
      "surface", 
      "T2", 
      "such orbifolds", 
      "Fayet-Iliopoulos deformations", 
      "R2 \u00d7 T2", 
      "\u00d7 T2", 
      "Dn quivers"
    ], 
    "name": "Dn quivers from branes", 
    "pagination": "015", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027763459"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1088/1126-6708/1998/12/015"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1088/1126-6708/1998/12/015", 
      "https://app.dimensions.ai/details/publication/pub.1027763459"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_269.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1088/1126-6708/1998/12/015"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/1998/12/015'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/1998/12/015'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/1998/12/015'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/1998/12/015'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      74 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1088/1126-6708/1998/12/015 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6ea023c64fad47399f3012a50bbd06c1
4 schema:datePublished 1998-12-15
5 schema:datePublishedReg 1998-12-15
6 schema:description D-branes can end on orbifold planes if the action of the orbifold group includes (−1)FL. We consider configurations of D-branes ending on such orbifolds and study the low-energy theory on their worldvolume. We apply our results to gauge theories with eight supercharges in three and four dimensions. We explain how mirror symmetry for N = 4 d = 3 gauge theories with gauge group Sp(k) and matter in the antisymmetric tensor and fundamental representations follows from S-duality of IIB string theory. We argue that some of these theories have hidden Fayet-Iliopoulos deformations, not visible classically. We also study a class of finite N = 2 d = 4 theories (so-called Dn quiver theories) and find their exact solution. The integrable model corresponding to the exact solution is a Hitchin system on an orbifold Riemann surface. We also give a simple derivation of the S-duality group of these theories based on their relationship to SO(2n) instantons on R2 × T2.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N2c37d14bfaa94b29bbf2156c046e4b84
11 N895025fb0429441fbb742a9a5f7e9c5d
12 sg:journal.1052482
13 schema:keywords Dn quivers
14 Fayet-Iliopoulos deformations
15 Hitchin system
16 IIB string theory
17 R2 × T2
18 Riemann surface
19 T2
20 action
21 antisymmetric tensor
22 branes
23 class
24 configuration
25 deformation
26 derivation
27 dimensions
28 duality
29 duality group
30 exact solution
31 finite N
32 fundamental representation
33 gauge group
34 gauge theory
35 group
36 instantons
37 integrable models
38 low-energy theory
39 mirror symmetry
40 model
41 orbifold Riemann surface
42 orbifold group
43 orbifold planes
44 orbifolds
45 plane
46 quivers
47 relationship
48 representation
49 results
50 simple derivation
51 solution
52 string theory
53 such orbifolds
54 supercharges
55 surface
56 symmetry
57 system
58 tensor
59 theory
60 worldvolume
61 × T2
62 schema:name Dn quivers from branes
63 schema:pagination 015
64 schema:productId N39d019743c7d456cafee0c2caa394a64
65 N7f8c0047d97d4defa57c12dc8d509f23
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027763459
67 https://doi.org/10.1088/1126-6708/1998/12/015
68 schema:sdDatePublished 2022-01-01T18:07
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nb67f0294bf1c4beab463ea23b8a04a4f
71 schema:url https://doi.org/10.1088/1126-6708/1998/12/015
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N2c37d14bfaa94b29bbf2156c046e4b84 schema:volumeNumber 1998
76 rdf:type schema:PublicationVolume
77 N39d019743c7d456cafee0c2caa394a64 schema:name doi
78 schema:value 10.1088/1126-6708/1998/12/015
79 rdf:type schema:PropertyValue
80 N6ea023c64fad47399f3012a50bbd06c1 rdf:first sg:person.013431107507.37
81 rdf:rest rdf:nil
82 N7f8c0047d97d4defa57c12dc8d509f23 schema:name dimensions_id
83 schema:value pub.1027763459
84 rdf:type schema:PropertyValue
85 N895025fb0429441fbb742a9a5f7e9c5d schema:issueNumber 12
86 rdf:type schema:PublicationIssue
87 Nb67f0294bf1c4beab463ea23b8a04a4f schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
93 schema:name Pure Mathematics
94 rdf:type schema:DefinedTerm
95 sg:journal.1052482 schema:issn 1029-8479
96 1126-6708
97 schema:name Journal of High Energy Physics
98 schema:publisher Springer Nature
99 rdf:type schema:Periodical
100 sg:person.013431107507.37 schema:affiliation grid-institutes:grid.78989.37
101 schema:familyName Kapustin
102 schema:givenName Anton
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013431107507.37
104 rdf:type schema:Person
105 grid-institutes:grid.78989.37 schema:alternateName School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA
106 schema:name School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...