Non-simply-connected gauge groups and rational points on elliptic curves View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1998-07-22

AUTHORS

Paul S. Aspinwall, David R. Morrison

ABSTRACT

We consider the F-theory description of non-simply-connected gauge groups appearing in the E8 × E8 heterotic string. The analysis is closely tied to the arithmetic of torsion points on an elliptic curve. The general form of the corresponding elliptic fibration is given for all finite subgroups of E8 which are applicable in this context. We also study the closely-related question of point-like instantons on a K3 surface whose holonomy is a finite group. As an example we consider the case of the heterotic string on a K3 surface having the E8 gauge symmetry broken to SU(9)/3 or (E6 × SU(3))/3 by point-like instantons with 3 holonomy. More... »

PAGES

012

Identifiers

URI

http://scigraph.springernature.com/pub.10.1088/1126-6708/1998/07/012

DOI

http://dx.doi.org/10.1088/1126-6708/1998/07/012

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002419177


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Center for Geometry and Theoretical Physics, Box 90318, Duke University, Durham, NC 27708-0318, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aspinwall", 
        "givenName": "Paul S.", 
        "id": "sg:person.015300745073.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015300745073.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Geometry and Theoretical Physics, Box 90318, Duke University, Durham, NC 27708-0318, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morrison", 
        "givenName": "David R.", 
        "id": "sg:person.011316747253.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316747253.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-07-22", 
    "datePublishedReg": "1998-07-22", 
    "description": "We consider the F-theory description of non-simply-connected gauge groups appearing in the E8 \u00d7 E8 heterotic string. The analysis is closely tied to the arithmetic of torsion points on an elliptic curve. The general form of the corresponding elliptic fibration is given for all finite subgroups of E8 which are applicable in this context. We also study the closely-related question of point-like instantons on a K3 surface whose holonomy is a finite group. As an example we consider the case of the heterotic string on a K3 surface having the E8 gauge symmetry broken to SU(9)/3 or (E6 \u00d7 SU(3))/3 by point-like instantons with 3 holonomy.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1088/1126-6708/1998/07/012", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "07", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1998"
      }
    ], 
    "name": "Non-simply-connected gauge groups and rational points on elliptic curves", 
    "pagination": "012", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0b849bb9f3482cd3c47b6e153f2097f2754c0fd285b0cc18b4da93e1cca4fc9d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1088/1126-6708/1998/07/012"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002419177"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1088/1126-6708/1998/07/012", 
      "https://app.dimensions.ai/details/publication/pub.1002419177"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://iopscience.iop.org/article/10.1088/1126-6708/1998/07/012/meta"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/1998/07/012'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/1998/07/012'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/1998/07/012'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1088/1126-6708/1998/07/012'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      20 PREDICATES      26 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1088/1126-6708/1998/07/012 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N13cba32a45814799b67f17f2788c2b5a
4 schema:datePublished 1998-07-22
5 schema:datePublishedReg 1998-07-22
6 schema:description We consider the F-theory description of non-simply-connected gauge groups appearing in the E8 × E8 heterotic string. The analysis is closely tied to the arithmetic of torsion points on an elliptic curve. The general form of the corresponding elliptic fibration is given for all finite subgroups of E8 which are applicable in this context. We also study the closely-related question of point-like instantons on a K3 surface whose holonomy is a finite group. As an example we consider the case of the heterotic string on a K3 surface having the E8 gauge symmetry broken to SU(9)/3 or (E6 × SU(3))/3 by point-like instantons with 3 holonomy.
7 schema:genre non_research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N38c991c877f649a294d7ea71a0ecf5a7
11 Nc0aee3af13cb4d378977dfdea86d8035
12 sg:journal.1052482
13 schema:name Non-simply-connected gauge groups and rational points on elliptic curves
14 schema:pagination 012
15 schema:productId N16f2e19e9be1426abd304854f7049777
16 N55e25a10e75044c3b630619faa5f8366
17 N8e68607c14e8461cbdf81336d5ffb65e
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002419177
19 https://doi.org/10.1088/1126-6708/1998/07/012
20 schema:sdDatePublished 2019-04-10T14:25
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nef57d5a442b049e89e53104b80ec69b7
23 schema:url http://iopscience.iop.org/article/10.1088/1126-6708/1998/07/012/meta
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N13cba32a45814799b67f17f2788c2b5a rdf:first sg:person.015300745073.81
28 rdf:rest N1b35b35f2797430492f0f7275e2fd550
29 N16f2e19e9be1426abd304854f7049777 schema:name dimensions_id
30 schema:value pub.1002419177
31 rdf:type schema:PropertyValue
32 N1b35b35f2797430492f0f7275e2fd550 rdf:first sg:person.011316747253.35
33 rdf:rest rdf:nil
34 N38c991c877f649a294d7ea71a0ecf5a7 schema:volumeNumber 1998
35 rdf:type schema:PublicationVolume
36 N55e25a10e75044c3b630619faa5f8366 schema:name doi
37 schema:value 10.1088/1126-6708/1998/07/012
38 rdf:type schema:PropertyValue
39 N683f795a118c438e8d2bfb5c48c29a3c schema:name Center for Geometry and Theoretical Physics, Box 90318, Duke University, Durham, NC 27708-0318, USA
40 rdf:type schema:Organization
41 N8e68607c14e8461cbdf81336d5ffb65e schema:name readcube_id
42 schema:value 0b849bb9f3482cd3c47b6e153f2097f2754c0fd285b0cc18b4da93e1cca4fc9d
43 rdf:type schema:PropertyValue
44 Na715bcf7433746b1bc8b8bbadb5dcb1f schema:name Center for Geometry and Theoretical Physics, Box 90318, Duke University, Durham, NC 27708-0318, USA
45 rdf:type schema:Organization
46 Nc0aee3af13cb4d378977dfdea86d8035 schema:issueNumber 07
47 rdf:type schema:PublicationIssue
48 Nef57d5a442b049e89e53104b80ec69b7 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1052482 schema:issn 1029-8479
57 1126-6708
58 schema:name Journal of High Energy Physics
59 rdf:type schema:Periodical
60 sg:person.011316747253.35 schema:affiliation N683f795a118c438e8d2bfb5c48c29a3c
61 schema:familyName Morrison
62 schema:givenName David R.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316747253.35
64 rdf:type schema:Person
65 sg:person.015300745073.81 schema:affiliation Na715bcf7433746b1bc8b8bbadb5dcb1f
66 schema:familyName Aspinwall
67 schema:givenName Paul S.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015300745073.81
69 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...