Sequence Detectors as a Basis of Grammar in the Brain View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003

AUTHORS

Friedemann Pulvermüller

ABSTRACT

Grammar processing may build upon serial-order mechanisms known from non-human species. A circuit similar to that underlying direction-sensitive movement detection in arthropods and vertebrates may become selective for sequences of words, thus yielding grammatical sequence detectors in the human brain. Sensitivity to the order of neuronal events arises from unequal connection strengths between two word specific neural units and a third element, the sequence detector. This mechanism, which critically depends on the dynamics of the neural units, can operate at the single neuron level and may be relevant at the level of neuronal ensembles as well. Due to the repeated occurrence of sequences, for example word strings, the sequence-sensitive elements become more firmly established and, by substitution of elements between strings, a process called auto-associative substitution learning (AASL) is triggered. AASL links the neuronal counterparts of the string elements involved in the substitution process to the sequence detector, thereby providing a brain basis of what can be described linguistically as the generalization of rules of grammar. A network of sequence detectors may constitute grammar circuits in the human cortex on which a separate set of mechanisms establishing temporary binding andrecursion can operate. More... »

PAGES

87-103

References to SciGraph publications

Journal

TITLE

Theory in Biosciences

ISSUE

1

VOLUME

122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1078/1431-7613-00076

DOI

http://dx.doi.org/10.1078/1431-7613-00076

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050665451


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MRC Cognition and Brain Sciences Unit, Cambridge", 
          "id": "http://www.grid.ac/institutes/grid.415036.5", 
          "name": [
            "MRC Cognition and Brain Sciences Unit, Cambridge"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pulverm\u00fcller", 
        "givenName": "Friedemann", 
        "id": "sg:person.01214737170.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214737170.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/222960a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006268665", 
          "https://doi.org/10.1038/222960a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-93083-6_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001516388", 
          "https://doi.org/10.1007/978-3-642-93083-6_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-81792-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052164481", 
          "https://doi.org/10.1007/978-3-642-81792-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035422600", 
          "https://doi.org/10.1007/bf00337019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03733-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040027094", 
          "https://doi.org/10.1007/978-3-662-03733-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008920127052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017027965", 
          "https://doi.org/10.1023/a:1008920127052"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "Grammar processing may build upon serial-order mechanisms known from non-human species. A circuit similar to that underlying direction-sensitive movement detection in arthropods and vertebrates may become selective for sequences of words, thus yielding grammatical sequence detectors in the human brain. Sensitivity to the order of neuronal events arises from unequal connection strengths between two word specific neural units and a third element, the sequence detector. This mechanism, which critically depends on the dynamics of the neural units, can operate at the single neuron level and may be relevant at the level of neuronal ensembles as well. Due to the repeated occurrence of sequences, for example word strings, the sequence-sensitive elements become more firmly established and, by substitution of elements between strings, a process called auto-associative substitution learning (AASL) is triggered. AASL links the neuronal counterparts of the string elements involved in the substitution process to the sequence detector, thereby providing a brain basis of what can be described linguistically as the generalization of rules of grammar. A network of sequence detectors may constitute grammar circuits in the human cortex on which a separate set of mechanisms establishing temporary binding andrecursion can operate.", 
    "genre": "article", 
    "id": "sg:pub.10.1078/1431-7613-00076", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1019628", 
        "issn": [
          "1431-7613", 
          "1611-7530"
        ], 
        "name": "Theory in Biosciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "122"
      }
    ], 
    "keywords": [
      "serial-order mechanism", 
      "sequence of words", 
      "neural units", 
      "brain basis", 
      "non-human species", 
      "grammar processing", 
      "word strings", 
      "single neuron level", 
      "generalization of rules", 
      "human brain", 
      "human cortex", 
      "neuronal ensembles", 
      "neuron level", 
      "connection strength", 
      "neuronal events", 
      "grammar", 
      "words", 
      "occurrence of sequences", 
      "neuronal counterparts", 
      "brain", 
      "substitution of elements", 
      "learning", 
      "cortex", 
      "processing", 
      "movement detection", 
      "separate set", 
      "string", 
      "process", 
      "string elements", 
      "generalization", 
      "levels", 
      "third element", 
      "mechanism", 
      "basis", 
      "events", 
      "sequence detector", 
      "network", 
      "elements", 
      "counterparts", 
      "circuit", 
      "set", 
      "rules", 
      "sensitivity", 
      "units", 
      "sequence", 
      "strength", 
      "order", 
      "dynamics", 
      "substitution process", 
      "ensemble", 
      "detection", 
      "occurrence", 
      "detector", 
      "vertebrates", 
      "substitution", 
      "species", 
      "arthropods"
    ], 
    "name": "Sequence Detectors as a Basis of Grammar in the Brain", 
    "pagination": "87-103", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050665451"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1078/1431-7613-00076"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1078/1431-7613-00076", 
      "https://app.dimensions.ai/details/publication/pub.1050665451"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_366.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1078/1431-7613-00076"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1078/1431-7613-00076'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1078/1431-7613-00076'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1078/1431-7613-00076'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1078/1431-7613-00076'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      87 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1078/1431-7613-00076 schema:about anzsrc-for:06
2 schema:author N93324132b51c4bf1b6ecd926c25df178
3 schema:citation sg:pub.10.1007/978-3-642-81792-2
4 sg:pub.10.1007/978-3-642-93083-6_9
5 sg:pub.10.1007/978-3-662-03733-1
6 sg:pub.10.1007/bf00337019
7 sg:pub.10.1023/a:1008920127052
8 sg:pub.10.1038/222960a0
9 schema:datePublished 2003
10 schema:datePublishedReg 2003-01-01
11 schema:description Grammar processing may build upon serial-order mechanisms known from non-human species. A circuit similar to that underlying direction-sensitive movement detection in arthropods and vertebrates may become selective for sequences of words, thus yielding grammatical sequence detectors in the human brain. Sensitivity to the order of neuronal events arises from unequal connection strengths between two word specific neural units and a third element, the sequence detector. This mechanism, which critically depends on the dynamics of the neural units, can operate at the single neuron level and may be relevant at the level of neuronal ensembles as well. Due to the repeated occurrence of sequences, for example word strings, the sequence-sensitive elements become more firmly established and, by substitution of elements between strings, a process called auto-associative substitution learning (AASL) is triggered. AASL links the neuronal counterparts of the string elements involved in the substitution process to the sequence detector, thereby providing a brain basis of what can be described linguistically as the generalization of rules of grammar. A network of sequence detectors may constitute grammar circuits in the human cortex on which a separate set of mechanisms establishing temporary binding andrecursion can operate.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N129351aeefa549b68f86d7f0e6eb2e89
15 N66dd5a06bc7b4e3c8859a661c9b9ae82
16 sg:journal.1019628
17 schema:keywords arthropods
18 basis
19 brain
20 brain basis
21 circuit
22 connection strength
23 cortex
24 counterparts
25 detection
26 detector
27 dynamics
28 elements
29 ensemble
30 events
31 generalization
32 generalization of rules
33 grammar
34 grammar processing
35 human brain
36 human cortex
37 learning
38 levels
39 mechanism
40 movement detection
41 network
42 neural units
43 neuron level
44 neuronal counterparts
45 neuronal ensembles
46 neuronal events
47 non-human species
48 occurrence
49 occurrence of sequences
50 order
51 process
52 processing
53 rules
54 sensitivity
55 separate set
56 sequence
57 sequence detector
58 sequence of words
59 serial-order mechanism
60 set
61 single neuron level
62 species
63 strength
64 string
65 string elements
66 substitution
67 substitution of elements
68 substitution process
69 third element
70 units
71 vertebrates
72 word strings
73 words
74 schema:name Sequence Detectors as a Basis of Grammar in the Brain
75 schema:pagination 87-103
76 schema:productId N2b6cb8da086c48e6ba767239ce3de172
77 N5dfd9a53c2694be8989fe2fd30f6410d
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050665451
79 https://doi.org/10.1078/1431-7613-00076
80 schema:sdDatePublished 2022-11-24T20:50
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nb8fe5ab34657457086931328350da36a
83 schema:url https://doi.org/10.1078/1431-7613-00076
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N129351aeefa549b68f86d7f0e6eb2e89 schema:volumeNumber 122
88 rdf:type schema:PublicationVolume
89 N2b6cb8da086c48e6ba767239ce3de172 schema:name doi
90 schema:value 10.1078/1431-7613-00076
91 rdf:type schema:PropertyValue
92 N5dfd9a53c2694be8989fe2fd30f6410d schema:name dimensions_id
93 schema:value pub.1050665451
94 rdf:type schema:PropertyValue
95 N66dd5a06bc7b4e3c8859a661c9b9ae82 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 N93324132b51c4bf1b6ecd926c25df178 rdf:first sg:person.01214737170.14
98 rdf:rest rdf:nil
99 Nb8fe5ab34657457086931328350da36a schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
102 schema:name Biological Sciences
103 rdf:type schema:DefinedTerm
104 sg:journal.1019628 schema:issn 1431-7613
105 1611-7530
106 schema:name Theory in Biosciences
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.01214737170.14 schema:affiliation grid-institutes:grid.415036.5
110 schema:familyName Pulvermüller
111 schema:givenName Friedemann
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214737170.14
113 rdf:type schema:Person
114 sg:pub.10.1007/978-3-642-81792-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052164481
115 https://doi.org/10.1007/978-3-642-81792-2
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-642-93083-6_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001516388
118 https://doi.org/10.1007/978-3-642-93083-6_9
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-662-03733-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040027094
121 https://doi.org/10.1007/978-3-662-03733-1
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf00337019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035422600
124 https://doi.org/10.1007/bf00337019
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1008920127052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017027965
127 https://doi.org/10.1023/a:1008920127052
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/222960a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006268665
130 https://doi.org/10.1038/222960a0
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.415036.5 schema:alternateName MRC Cognition and Brain Sciences Unit, Cambridge
133 schema:name MRC Cognition and Brain Sciences Unit, Cambridge
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...