Accuracy of exercise stress technetium 99m sestamibi SPECT imaging in the evaluation of the extent and location of coronary artery ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-09

AUTHORS

Abdou Elhendy, Fabiola B. Sozzi, Ron T. van Domburg, Jeroen J. Bax, Marcel L. Geleijnse, Roelf Valkema, Eric P. Krenning, Jos R. T. C. Roelandt

ABSTRACT

BACKGROUND: This study assessed the accuracy of exercise methoxy isobutyl isonitrile (MIBI) single photon emission computed tomography (SPECT) in the evaluation of the extent of coronary artery disease (CAD) in patients with an earlier myocardial infarction. METHODS AND RESULTS: We studied 135 patients (mean age, 57+/-10 years; 115 men) at a mean of 4.1 years (median, 1 year) after myocardial infarction with symptom-limited bicycle exercise stress and rest MIBI SPECT imaging. Coronary angiography was performed within 3 months. Significant CAD was defined as a stenosis of 50% or larger in luminal diameter in 1 or more major coronary arteries. Myocardial perfusion defects (fixed, reversible, or both) were detected in 107 of the 113 patients with significant CAD and in 10 of the 22 patients without significant CAD (sensitivity, 95%; CI, 91 to 99; specificity, 55%; CI, 46 to 63, and accuracy, 88%; CI, 82 to 94). The specificity rate increased to 73% (CI, 65 to 80) by using only reversible perfusion defects as a means of predicting CAD. Reversible perfusion abnormalities were more frequent in patients with multivessel CAD than in patients with single-vessel CAD (51 of 64 [80%] vs. 27 of 49 [55%], P<.01). Myocardial perfusion abnormalities in 2 vascular regions, which is suggestive of multivessel CAD, were detected in 35 of the 64 patients with and in 9 of the 71 patients without multivessel CAD (sensitivity for detecting CAD in more than one vascular region, 55%; CI, 46 to 63, specificity, 87%; CI, 81 to 93, and accuracy, 72%; CI, 64 to 80). The sensitivity rates for the diagnosis of left anterior descending coronary artery, left circumflex, and right coronary artery based on any defect were 80%, 70%, and 63%, respectively. The corresponding specificity rates were 70%, 76%, and 73%, respectively. CONCLUSIONS: Exercise MIBI SPECT imaging is an accurate method for the diagnosis and localization of CAD in patients with an earlier myocardial infarction. The technique provides a high specificity and moderate sensitivity for the diagnosis of multivessel CAD on the basis of myocardial perfusion abnormalities in more than 1 vascular region. More... »

PAGES

432-438

Identifiers

URI

http://scigraph.springernature.com/pub.10.1067/mnc.2000.107426

DOI

http://dx.doi.org/10.1067/mnc.2000.107426

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021399646

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11083191


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coenzyme A Ligases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exercise Test", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Technetium Tc 99m Sestamibi", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Cardiovascular Diseases and Internal Medicine, Mayo Clinic, Plummer Building A1, 200 1st St SW, 55905, Rochester, MN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elhendy", 
        "givenName": "Abdou", 
        "id": "sg:person.01321760144.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321760144.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Thoraxcenter, University Hospital-Dijkzigt, Rotterdam, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sozzi", 
        "givenName": "Fabiola B.", 
        "id": "sg:person.01173004437.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173004437.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Thoraxcenter, University Hospital-Dijkzigt, Rotterdam, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Domburg", 
        "givenName": "Ron T.", 
        "id": "sg:person.0724310660.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724310660.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Thoraxcenter, University Hospital-Dijkzigt, Rotterdam, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bax", 
        "givenName": "Jeroen J.", 
        "id": "sg:person.01340245251.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340245251.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Thoraxcenter, University Hospital-Dijkzigt, Rotterdam, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geleijnse", 
        "givenName": "Marcel L.", 
        "id": "sg:person.015364102477.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364102477.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Nuclear Medicine, University Hospital-Dijkzigt, Rotterdam, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valkema", 
        "givenName": "Roelf", 
        "id": "sg:person.01247204527.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247204527.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Nuclear Medicine, University Hospital-Dijkzigt, Rotterdam, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krenning", 
        "givenName": "Eric P.", 
        "id": "sg:person.01255444752.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255444752.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Thoraxcenter, University Hospital-Dijkzigt, Rotterdam, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roelandt", 
        "givenName": "Jos R. T. C.", 
        "id": "sg:person.015016463057.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015016463057.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0735-1097(98)00177-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000440051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006231-199301000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010396183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006231-199301000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010396183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006231-199301000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010396183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-8703(95)90438-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016113643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00808414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016969341", 
          "https://doi.org/10.1007/bf00808414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1071-3581(97)90078-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018247981", 
          "https://doi.org/10.1016/s1071-3581(97)90078-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0735-1097(95)00478-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021870774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.68.2.321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022021365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(90)90613-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024352623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(90)91100-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024567126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(92)90036-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025608659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.280.10.913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033650841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(90)90619-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034794627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02939973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038989224", 
          "https://doi.org/10.1007/bf02939973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02939973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038989224", 
          "https://doi.org/10.1007/bf02939973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(87)90975-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041606958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0735-1097(94)90388-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042807002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9149(96)00746-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044259697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(86)90008-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044304093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9149(91)90040-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048545907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0001-2998(05)80040-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050588328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1071-3581(96)90056-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050820105", 
          "https://doi.org/10.1016/s1071-3581(96)90056-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.100.20.2060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050912426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074317493", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077618713", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.eurheartj.a061752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080078482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082675112", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082865378", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083263119", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-09", 
    "datePublishedReg": "2000-09-01", 
    "description": "BACKGROUND: This study assessed the accuracy of exercise methoxy isobutyl isonitrile (MIBI) single photon emission computed tomography (SPECT) in the evaluation of the extent of coronary artery disease (CAD) in patients with an earlier myocardial infarction.\nMETHODS AND RESULTS: We studied 135 patients (mean age, 57+/-10 years; 115 men) at a mean of 4.1 years (median, 1 year) after myocardial infarction with symptom-limited bicycle exercise stress and rest MIBI SPECT imaging. Coronary angiography was performed within 3 months. Significant CAD was defined as a stenosis of 50% or larger in luminal diameter in 1 or more major coronary arteries. Myocardial perfusion defects (fixed, reversible, or both) were detected in 107 of the 113 patients with significant CAD and in 10 of the 22 patients without significant CAD (sensitivity, 95%; CI, 91 to 99; specificity, 55%; CI, 46 to 63, and accuracy, 88%; CI, 82 to 94). The specificity rate increased to 73% (CI, 65 to 80) by using only reversible perfusion defects as a means of predicting CAD. Reversible perfusion abnormalities were more frequent in patients with multivessel CAD than in patients with single-vessel CAD (51 of 64 [80%] vs. 27 of 49 [55%], P<.01). Myocardial perfusion abnormalities in 2 vascular regions, which is suggestive of multivessel CAD, were detected in 35 of the 64 patients with and in 9 of the 71 patients without multivessel CAD (sensitivity for detecting CAD in more than one vascular region, 55%; CI, 46 to 63, specificity, 87%; CI, 81 to 93, and accuracy, 72%; CI, 64 to 80). The sensitivity rates for the diagnosis of left anterior descending coronary artery, left circumflex, and right coronary artery based on any defect were 80%, 70%, and 63%, respectively. The corresponding specificity rates were 70%, 76%, and 73%, respectively.\nCONCLUSIONS: Exercise MIBI SPECT imaging is an accurate method for the diagnosis and localization of CAD in patients with an earlier myocardial infarction. The technique provides a high specificity and moderate sensitivity for the diagnosis of multivessel CAD on the basis of myocardial perfusion abnormalities in more than 1 vascular region.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1067/mnc.2000.107426", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1106202", 
        "issn": [
          "1071-3581", 
          "1532-6551"
        ], 
        "name": "Journal of Nuclear Cardiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Accuracy of exercise stress technetium 99m sestamibi SPECT imaging in the evaluation of the extent and location of coronary artery disease in patients with an earlier myocardial infarction", 
    "pagination": "432-438", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "65f5515764e8742c46a99e3bab409cb9a9c86399affd7049dc0426a82a2a3cbd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11083191"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9423534"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1067/mnc.2000.107426"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021399646"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1067/mnc.2000.107426", 
      "https://app.dimensions.ai/details/publication/pub.1021399646"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1067%2Fmnc.2000.107426"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1067/mnc.2000.107426'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1067/mnc.2000.107426'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1067/mnc.2000.107426'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1067/mnc.2000.107426'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      21 PREDICATES      71 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1067/mnc.2000.107426 schema:about N11b29dd8f6464b5eb7e3d006df520587
2 N14fd4da93cd44a7d959a30bad605ad5c
3 N25c1770f03334573b64a72b290d52a8b
4 N35525f7deee94345abd0abf1cef9bc9e
5 N3715f7baefcf4b92b598f9106bc84baa
6 N41a4f29fd408464ea529169f9ed5fa12
7 N42c908d655cc40588d9b626a7d90163b
8 N4452c3687021466aa3a7fb3fecb76e3c
9 N47383903846d4497a6e0884ec40440ab
10 N7ea4015a0fb043c8964483f2de1c9de2
11 N8756326b5c5544b3b5a4649b1f429b2c
12 Nbde1c37166224650ad5a0880094f13e4
13 Nd4a2387a75aa473e9bd11441687312cb
14 Neab208e37a7446b7832951373be17694
15 Nfb768661c9f14f9c8bc1e5d05774165b
16 anzsrc-for:11
17 anzsrc-for:1102
18 schema:author N58740fda9f784b30991b3bb01da1ea6f
19 schema:citation sg:pub.10.1007/bf00808414
20 sg:pub.10.1007/bf02939973
21 sg:pub.10.1016/s1071-3581(96)90056-2
22 sg:pub.10.1016/s1071-3581(97)90078-7
23 https://app.dimensions.ai/details/publication/pub.1074317493
24 https://app.dimensions.ai/details/publication/pub.1077618713
25 https://app.dimensions.ai/details/publication/pub.1082675112
26 https://app.dimensions.ai/details/publication/pub.1082865378
27 https://app.dimensions.ai/details/publication/pub.1083263119
28 https://doi.org/10.1001/jama.280.10.913
29 https://doi.org/10.1016/0002-8703(95)90438-7
30 https://doi.org/10.1016/0002-9149(86)90008-1
31 https://doi.org/10.1016/0002-9149(87)90975-1
32 https://doi.org/10.1016/0002-9149(90)90613-6
33 https://doi.org/10.1016/0002-9149(90)90619-c
34 https://doi.org/10.1016/0002-9149(90)91100-k
35 https://doi.org/10.1016/0002-9149(91)90040-r
36 https://doi.org/10.1016/0002-9149(92)90036-x
37 https://doi.org/10.1016/0735-1097(94)90388-3
38 https://doi.org/10.1016/0735-1097(95)00478-5
39 https://doi.org/10.1016/s0001-2998(05)80040-6
40 https://doi.org/10.1016/s0002-9149(96)00746-1
41 https://doi.org/10.1016/s0735-1097(98)00177-6
42 https://doi.org/10.1093/oxfordjournals.eurheartj.a061752
43 https://doi.org/10.1097/00006231-199301000-00006
44 https://doi.org/10.1161/01.cir.100.20.2060
45 https://doi.org/10.1161/01.cir.68.2.321
46 schema:datePublished 2000-09
47 schema:datePublishedReg 2000-09-01
48 schema:description BACKGROUND: This study assessed the accuracy of exercise methoxy isobutyl isonitrile (MIBI) single photon emission computed tomography (SPECT) in the evaluation of the extent of coronary artery disease (CAD) in patients with an earlier myocardial infarction. METHODS AND RESULTS: We studied 135 patients (mean age, 57+/-10 years; 115 men) at a mean of 4.1 years (median, 1 year) after myocardial infarction with symptom-limited bicycle exercise stress and rest MIBI SPECT imaging. Coronary angiography was performed within 3 months. Significant CAD was defined as a stenosis of 50% or larger in luminal diameter in 1 or more major coronary arteries. Myocardial perfusion defects (fixed, reversible, or both) were detected in 107 of the 113 patients with significant CAD and in 10 of the 22 patients without significant CAD (sensitivity, 95%; CI, 91 to 99; specificity, 55%; CI, 46 to 63, and accuracy, 88%; CI, 82 to 94). The specificity rate increased to 73% (CI, 65 to 80) by using only reversible perfusion defects as a means of predicting CAD. Reversible perfusion abnormalities were more frequent in patients with multivessel CAD than in patients with single-vessel CAD (51 of 64 [80%] vs. 27 of 49 [55%], P<.01). Myocardial perfusion abnormalities in 2 vascular regions, which is suggestive of multivessel CAD, were detected in 35 of the 64 patients with and in 9 of the 71 patients without multivessel CAD (sensitivity for detecting CAD in more than one vascular region, 55%; CI, 46 to 63, specificity, 87%; CI, 81 to 93, and accuracy, 72%; CI, 64 to 80). The sensitivity rates for the diagnosis of left anterior descending coronary artery, left circumflex, and right coronary artery based on any defect were 80%, 70%, and 63%, respectively. The corresponding specificity rates were 70%, 76%, and 73%, respectively. CONCLUSIONS: Exercise MIBI SPECT imaging is an accurate method for the diagnosis and localization of CAD in patients with an earlier myocardial infarction. The technique provides a high specificity and moderate sensitivity for the diagnosis of multivessel CAD on the basis of myocardial perfusion abnormalities in more than 1 vascular region.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N24a1a3ea9d7d462086e01774f68cf5fd
53 Ndf5a4f6d69d54f119feb02881be2287c
54 sg:journal.1106202
55 schema:name Accuracy of exercise stress technetium 99m sestamibi SPECT imaging in the evaluation of the extent and location of coronary artery disease in patients with an earlier myocardial infarction
56 schema:pagination 432-438
57 schema:productId N1319a4c02ed24179a47b9ca2d4699ec2
58 N9ff35359cce442a791a55615dd0fbd6e
59 Naab37dd9d6ab4983866b87946ce1eee7
60 Ncaf518e4d1fc46eb92113dd8e499c5b8
61 Neaf1fb7795044f7f9c68e4c7a76116da
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021399646
63 https://doi.org/10.1067/mnc.2000.107426
64 schema:sdDatePublished 2019-04-10T17:36
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Ndf5e49fcdb114088b731a92e374c2119
67 schema:url http://link.springer.com/10.1067%2Fmnc.2000.107426
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N11b29dd8f6464b5eb7e3d006df520587 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Exercise Test
73 rdf:type schema:DefinedTerm
74 N1319a4c02ed24179a47b9ca2d4699ec2 schema:name nlm_unique_id
75 schema:value 9423534
76 rdf:type schema:PropertyValue
77 N14fd4da93cd44a7d959a30bad605ad5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Tomography, Emission-Computed, Single-Photon
79 rdf:type schema:DefinedTerm
80 N1a13dfde309e4db7a4621f801de84576 rdf:first sg:person.01340245251.83
81 rdf:rest Ndbd84a8f3814469cb1c0a051e9f65975
82 N20245da977434e349fd0369bb4a2804c rdf:first sg:person.01255444752.54
83 rdf:rest N9e6e645255df4e5188a36ff47b3528e8
84 N24a1a3ea9d7d462086e01774f68cf5fd schema:volumeNumber 7
85 rdf:type schema:PublicationVolume
86 N25c1770f03334573b64a72b290d52a8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Coronary Angiography
88 rdf:type schema:DefinedTerm
89 N35525f7deee94345abd0abf1cef9bc9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Sensitivity and Specificity
91 rdf:type schema:DefinedTerm
92 N3715f7baefcf4b92b598f9106bc84baa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Adult
94 rdf:type schema:DefinedTerm
95 N3738145924df469dbb06d769390fc36b rdf:first sg:person.0724310660.17
96 rdf:rest N1a13dfde309e4db7a4621f801de84576
97 N41a4f29fd408464ea529169f9ed5fa12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Technetium Tc 99m Sestamibi
99 rdf:type schema:DefinedTerm
100 N42c908d655cc40588d9b626a7d90163b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Middle Aged
102 rdf:type schema:DefinedTerm
103 N4452c3687021466aa3a7fb3fecb76e3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Radiopharmaceuticals
105 rdf:type schema:DefinedTerm
106 N47383903846d4497a6e0884ec40440ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Hemodynamics
108 rdf:type schema:DefinedTerm
109 N5592d9c692f3454a947e75dbfd9eaaf6 rdf:first sg:person.01173004437.69
110 rdf:rest N3738145924df469dbb06d769390fc36b
111 N58740fda9f784b30991b3bb01da1ea6f rdf:first sg:person.01321760144.88
112 rdf:rest N5592d9c692f3454a947e75dbfd9eaaf6
113 N7ea4015a0fb043c8964483f2de1c9de2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Male
115 rdf:type schema:DefinedTerm
116 N8756326b5c5544b3b5a4649b1f429b2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Female
118 rdf:type schema:DefinedTerm
119 N9e6e645255df4e5188a36ff47b3528e8 rdf:first sg:person.015016463057.99
120 rdf:rest rdf:nil
121 N9ff35359cce442a791a55615dd0fbd6e schema:name pubmed_id
122 schema:value 11083191
123 rdf:type schema:PropertyValue
124 Naab37dd9d6ab4983866b87946ce1eee7 schema:name dimensions_id
125 schema:value pub.1021399646
126 rdf:type schema:PropertyValue
127 Nbde1c37166224650ad5a0880094f13e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Coenzyme A Ligases
129 rdf:type schema:DefinedTerm
130 Nc29d5526c28844a2965f44be400f720f rdf:first sg:person.01247204527.35
131 rdf:rest N20245da977434e349fd0369bb4a2804c
132 Ncaf518e4d1fc46eb92113dd8e499c5b8 schema:name doi
133 schema:value 10.1067/mnc.2000.107426
134 rdf:type schema:PropertyValue
135 Nd4a2387a75aa473e9bd11441687312cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Humans
137 rdf:type schema:DefinedTerm
138 Ndbd84a8f3814469cb1c0a051e9f65975 rdf:first sg:person.015364102477.04
139 rdf:rest Nc29d5526c28844a2965f44be400f720f
140 Ndf5a4f6d69d54f119feb02881be2287c schema:issueNumber 5
141 rdf:type schema:PublicationIssue
142 Ndf5e49fcdb114088b731a92e374c2119 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Neab208e37a7446b7832951373be17694 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Coronary Disease
146 rdf:type schema:DefinedTerm
147 Neaf1fb7795044f7f9c68e4c7a76116da schema:name readcube_id
148 schema:value 65f5515764e8742c46a99e3bab409cb9a9c86399affd7049dc0426a82a2a3cbd
149 rdf:type schema:PropertyValue
150 Nfb768661c9f14f9c8bc1e5d05774165b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Myocardial Infarction
152 rdf:type schema:DefinedTerm
153 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
154 schema:name Medical and Health Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
157 schema:name Cardiorespiratory Medicine and Haematology
158 rdf:type schema:DefinedTerm
159 sg:journal.1106202 schema:issn 1071-3581
160 1532-6551
161 schema:name Journal of Nuclear Cardiology
162 rdf:type schema:Periodical
163 sg:person.01173004437.69 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
164 schema:familyName Sozzi
165 schema:givenName Fabiola B.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173004437.69
167 rdf:type schema:Person
168 sg:person.01247204527.35 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
169 schema:familyName Valkema
170 schema:givenName Roelf
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247204527.35
172 rdf:type schema:Person
173 sg:person.01255444752.54 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
174 schema:familyName Krenning
175 schema:givenName Eric P.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255444752.54
177 rdf:type schema:Person
178 sg:person.01321760144.88 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
179 schema:familyName Elhendy
180 schema:givenName Abdou
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321760144.88
182 rdf:type schema:Person
183 sg:person.01340245251.83 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
184 schema:familyName Bax
185 schema:givenName Jeroen J.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340245251.83
187 rdf:type schema:Person
188 sg:person.015016463057.99 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
189 schema:familyName Roelandt
190 schema:givenName Jos R. T. C.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015016463057.99
192 rdf:type schema:Person
193 sg:person.015364102477.04 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
194 schema:familyName Geleijnse
195 schema:givenName Marcel L.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364102477.04
197 rdf:type schema:Person
198 sg:person.0724310660.17 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
199 schema:familyName van Domburg
200 schema:givenName Ron T.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724310660.17
202 rdf:type schema:Person
203 sg:pub.10.1007/bf00808414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016969341
204 https://doi.org/10.1007/bf00808414
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/bf02939973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038989224
207 https://doi.org/10.1007/bf02939973
208 rdf:type schema:CreativeWork
209 sg:pub.10.1016/s1071-3581(96)90056-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050820105
210 https://doi.org/10.1016/s1071-3581(96)90056-2
211 rdf:type schema:CreativeWork
212 sg:pub.10.1016/s1071-3581(97)90078-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018247981
213 https://doi.org/10.1016/s1071-3581(97)90078-7
214 rdf:type schema:CreativeWork
215 https://app.dimensions.ai/details/publication/pub.1074317493 schema:CreativeWork
216 https://app.dimensions.ai/details/publication/pub.1077618713 schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1082675112 schema:CreativeWork
218 https://app.dimensions.ai/details/publication/pub.1082865378 schema:CreativeWork
219 https://app.dimensions.ai/details/publication/pub.1083263119 schema:CreativeWork
220 https://doi.org/10.1001/jama.280.10.913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033650841
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/0002-8703(95)90438-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016113643
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/0002-9149(86)90008-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044304093
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/0002-9149(87)90975-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041606958
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/0002-9149(90)90613-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024352623
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/0002-9149(90)90619-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1034794627
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/0002-9149(90)91100-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1024567126
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/0002-9149(91)90040-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1048545907
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/0002-9149(92)90036-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025608659
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/0735-1097(94)90388-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042807002
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/0735-1097(95)00478-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021870774
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/s0001-2998(05)80040-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050588328
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/s0002-9149(96)00746-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044259697
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/s0735-1097(98)00177-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000440051
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/oxfordjournals.eurheartj.a061752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080078482
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1097/00006231-199301000-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010396183
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1161/01.cir.100.20.2060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050912426
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1161/01.cir.68.2.321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022021365
255 rdf:type schema:CreativeWork
256 https://www.grid.ac/institutes/grid.5645.2 schema:alternateName Erasmus University Medical Center
257 schema:name Department of Nuclear Medicine, University Hospital-Dijkzigt, Rotterdam, Netherlands
258 Thoraxcenter, University Hospital-Dijkzigt, Rotterdam, Netherlands
259 rdf:type schema:Organization
260 https://www.grid.ac/institutes/grid.66875.3a schema:alternateName Mayo Clinic
261 schema:name Division of Cardiovascular Diseases and Internal Medicine, Mayo Clinic, Plummer Building A1, 200 1st St SW, 55905, Rochester, MN
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...