Efficient design of freight train operation with double-hump yards View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Zhimei Wang, Avishai Ceder

ABSTRACT

This work provides a new methodology to solve the rail freight train service design problem, with the following distinctive characteristics: (1) service costs, traveling distances and capacities of different service paths in each double-hump yard are explicitly considered; and (2) the direction of train service movement through double-hump yards are determined. The problem is formulated as integer programming, aiming at minimizing the total cost of cumulative train service cost, service cost and distance-driven cost. Three examples of different scales are solved using tabu search algorithm. The results and process of the algorithm, compared with exact solutions determined by the ILOG Cplex software, demonstrate high computational efficiency and solution quality. A small- and a large-scale case study in China are used to examine the model. The results show that the methodology used could save between 8.3 and 40% of the number of shifted service cars compared with the best-known published model. More... »

PAGES

1600-1619

References to SciGraph publications

  • 2008-03. An overview of the issues in the airline industry and the role of optimization models and algorithms in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • 2009-03. Designing new European rail freight services in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • 2005-07. Shunting Minimal Rail Car Allocation in COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
  • 2011-12. Service network design for freight railway transportation: the Italian case in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1057/s41274-017-0187-6

    DOI

    http://dx.doi.org/10.1057/s41274-017-0187-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083885946


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Beijing Jiaotong University", 
              "id": "https://www.grid.ac/institutes/grid.181531.f", 
              "name": [
                "State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, People\u2019s Republic of China", 
                "Department of Urban Rail Traffic, School of Traffic and Transportation, Beijing Jiaotong University, 3 Shang Yuan Cun, Hai Dian District, 100044, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Zhimei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technion \u2013 Israel Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.6451.6", 
              "name": [
                "Transportation Research Centre, Department of Civil and Environmental Engineering, 20 Symonds Street, University of Auckland, Auckland, New Zealand", 
                "Technion-Israel Institute of Technology, Haifa, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ceder", 
            "givenName": "Avishai", 
            "id": "sg:person.016602376627.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602376627.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.trb.2016.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002115224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/jors.2010.190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005125307", 
              "https://doi.org/10.1057/jors.2010.190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/palgrave.jors.2602559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005256322", 
              "https://doi.org/10.1057/palgrave.jors.2602559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trb.2011.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005566826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/net.20385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013472092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/net.20385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013472092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trc.2008.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014108527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jrtpm.2016.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015566685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0191-2615(89)90043-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016602159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2007.10.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025113601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(95)00193-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028165516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cie.2014.07.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031388660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tre.2011.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035451722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0191-2615(89)90042-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036652118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0191-2615(86)90019-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038174918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/palgrave.jors.2602350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038810947", 
              "https://doi.org/10.1057/palgrave.jors.2602350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10589-005-3229-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042306182", 
              "https://doi.org/10.1007/s10589-005-3229-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10589-005-3229-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042306182", 
              "https://doi.org/10.1007/s10589-005-3229-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10589-005-3229-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042306182", 
              "https://doi.org/10.1007/s10589-005-3229-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1571-0661(04)80528-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042806771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trb.2015.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045712854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0305-0548(86)90048-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045751221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0305-0548(86)90048-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045751221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(94)00334-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047915438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trb.2011.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048187853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0191-2615(80)90036-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052643852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/inte.1030.0055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064707825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/inte.1070.0295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064708054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/inte.25.3.58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064709910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/opre.2013.1254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064727957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/opre.46.2.247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064731033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/opre.48.4.603.12416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064731261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/trsc.1080.0234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064734270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/trsc.11.1.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064734344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/trsc.1100.0348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064734398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/trsc.18.2.165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064734685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/trsc.2013.0486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064734832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/trsc.26.4.263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064735234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/trsc.32.4.330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064735476"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "This work provides a new methodology to solve the rail freight train service design problem, with the following distinctive characteristics: (1) service costs, traveling distances and capacities of different service paths in each double-hump yard are explicitly considered; and (2) the direction of train service movement through double-hump yards are determined. The problem is formulated as integer programming, aiming at minimizing the total cost of cumulative train service cost, service cost and distance-driven cost. Three examples of different scales are solved using tabu search algorithm. The results and process of the algorithm, compared with exact solutions determined by the ILOG Cplex software, demonstrate high computational efficiency and solution quality. A small- and a large-scale case study in China are used to examine the model. The results show that the methodology used could save between 8.3 and 40% of the number of shifted service cars compared with the best-known published model.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1057/s41274-017-0187-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1087747", 
            "issn": [
              "0160-5682", 
              "1476-9360"
            ], 
            "name": "Journal of the Operational Research Society", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "68"
          }
        ], 
        "name": "Efficient design of freight train operation with double-hump yards", 
        "pagination": "1600-1619", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "639a502bae3f8bd052d708200eeaf9266794948af6df51ef5c30276493a834d5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1057/s41274-017-0187-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083885946"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1057/s41274-017-0187-6", 
          "https://app.dimensions.ai/details/publication/pub.1083885946"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000508.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1057/s41274-017-0187-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1057/s41274-017-0187-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1057/s41274-017-0187-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1057/s41274-017-0187-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1057/s41274-017-0187-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    181 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1057/s41274-017-0187-6 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N8165ba106ce54fefaefc2279f5cc28a6
    4 schema:citation sg:pub.10.1007/s10589-005-3229-y
    5 sg:pub.10.1057/jors.2010.190
    6 sg:pub.10.1057/palgrave.jors.2602350
    7 sg:pub.10.1057/palgrave.jors.2602559
    8 https://doi.org/10.1002/net.20385
    9 https://doi.org/10.1016/0191-2615(80)90036-3
    10 https://doi.org/10.1016/0191-2615(86)90019-6
    11 https://doi.org/10.1016/0191-2615(89)90042-8
    12 https://doi.org/10.1016/0191-2615(89)90043-x
    13 https://doi.org/10.1016/0305-0548(86)90048-1
    14 https://doi.org/10.1016/0377-2217(94)00334-3
    15 https://doi.org/10.1016/0377-2217(95)00193-x
    16 https://doi.org/10.1016/j.cie.2014.07.007
    17 https://doi.org/10.1016/j.ejor.2007.10.057
    18 https://doi.org/10.1016/j.jrtpm.2016.09.002
    19 https://doi.org/10.1016/j.trb.2011.07.005
    20 https://doi.org/10.1016/j.trb.2011.12.003
    21 https://doi.org/10.1016/j.trb.2015.03.002
    22 https://doi.org/10.1016/j.trb.2016.10.001
    23 https://doi.org/10.1016/j.trc.2008.10.005
    24 https://doi.org/10.1016/j.tre.2011.02.004
    25 https://doi.org/10.1016/s1571-0661(04)80528-0
    26 https://doi.org/10.1287/inte.1030.0055
    27 https://doi.org/10.1287/inte.1070.0295
    28 https://doi.org/10.1287/inte.25.3.58
    29 https://doi.org/10.1287/opre.2013.1254
    30 https://doi.org/10.1287/opre.46.2.247
    31 https://doi.org/10.1287/opre.48.4.603.12416
    32 https://doi.org/10.1287/trsc.1080.0234
    33 https://doi.org/10.1287/trsc.11.1.37
    34 https://doi.org/10.1287/trsc.1100.0348
    35 https://doi.org/10.1287/trsc.18.2.165
    36 https://doi.org/10.1287/trsc.2013.0486
    37 https://doi.org/10.1287/trsc.26.4.263
    38 https://doi.org/10.1287/trsc.32.4.330
    39 schema:datePublished 2017-12
    40 schema:datePublishedReg 2017-12-01
    41 schema:description This work provides a new methodology to solve the rail freight train service design problem, with the following distinctive characteristics: (1) service costs, traveling distances and capacities of different service paths in each double-hump yard are explicitly considered; and (2) the direction of train service movement through double-hump yards are determined. The problem is formulated as integer programming, aiming at minimizing the total cost of cumulative train service cost, service cost and distance-driven cost. Three examples of different scales are solved using tabu search algorithm. The results and process of the algorithm, compared with exact solutions determined by the ILOG Cplex software, demonstrate high computational efficiency and solution quality. A small- and a large-scale case study in China are used to examine the model. The results show that the methodology used could save between 8.3 and 40% of the number of shifted service cars compared with the best-known published model.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N79c56276715d4c179b025a10d7a69829
    46 Nbf05bf07a2cd4e4db135e023c5e170e2
    47 sg:journal.1087747
    48 schema:name Efficient design of freight train operation with double-hump yards
    49 schema:pagination 1600-1619
    50 schema:productId N4877ea89e65e4ccca16c593534146655
    51 Nbc3740c7d80643a7bc7a2159e9bbe334
    52 Nbffe5130d9f645a6a77067a0babaf85f
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083885946
    54 https://doi.org/10.1057/s41274-017-0187-6
    55 schema:sdDatePublished 2019-04-10T18:19
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N885e6b4395e344a08e9ec9e746a328c1
    58 schema:url http://link.springer.com/10.1057/s41274-017-0187-6
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N4877ea89e65e4ccca16c593534146655 schema:name readcube_id
    63 schema:value 639a502bae3f8bd052d708200eeaf9266794948af6df51ef5c30276493a834d5
    64 rdf:type schema:PropertyValue
    65 N69b289b85855487cab5e88377c0b5f62 schema:affiliation https://www.grid.ac/institutes/grid.181531.f
    66 schema:familyName Wang
    67 schema:givenName Zhimei
    68 rdf:type schema:Person
    69 N79c56276715d4c179b025a10d7a69829 schema:volumeNumber 68
    70 rdf:type schema:PublicationVolume
    71 N8165ba106ce54fefaefc2279f5cc28a6 rdf:first N69b289b85855487cab5e88377c0b5f62
    72 rdf:rest N9a6c93453b0b4633a435e71d9ad8a2da
    73 N885e6b4395e344a08e9ec9e746a328c1 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N9a6c93453b0b4633a435e71d9ad8a2da rdf:first sg:person.016602376627.01
    76 rdf:rest rdf:nil
    77 Nbc3740c7d80643a7bc7a2159e9bbe334 schema:name doi
    78 schema:value 10.1057/s41274-017-0187-6
    79 rdf:type schema:PropertyValue
    80 Nbf05bf07a2cd4e4db135e023c5e170e2 schema:issueNumber 12
    81 rdf:type schema:PublicationIssue
    82 Nbffe5130d9f645a6a77067a0babaf85f schema:name dimensions_id
    83 schema:value pub.1083885946
    84 rdf:type schema:PropertyValue
    85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Mathematical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Numerical and Computational Mathematics
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1087747 schema:issn 0160-5682
    92 1476-9360
    93 schema:name Journal of the Operational Research Society
    94 rdf:type schema:Periodical
    95 sg:person.016602376627.01 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
    96 schema:familyName Ceder
    97 schema:givenName Avishai
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602376627.01
    99 rdf:type schema:Person
    100 sg:pub.10.1007/s10589-005-3229-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042306182
    101 https://doi.org/10.1007/s10589-005-3229-y
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1057/jors.2010.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005125307
    104 https://doi.org/10.1057/jors.2010.190
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1057/palgrave.jors.2602350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038810947
    107 https://doi.org/10.1057/palgrave.jors.2602350
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1057/palgrave.jors.2602559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005256322
    110 https://doi.org/10.1057/palgrave.jors.2602559
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/net.20385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013472092
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/0191-2615(80)90036-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052643852
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/0191-2615(86)90019-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038174918
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/0191-2615(89)90042-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036652118
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/0191-2615(89)90043-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016602159
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/0305-0548(86)90048-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045751221
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/0377-2217(94)00334-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047915438
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0377-2217(95)00193-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028165516
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.cie.2014.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031388660
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.ejor.2007.10.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025113601
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.jrtpm.2016.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015566685
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.trb.2011.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048187853
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.trb.2011.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005566826
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.trb.2015.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045712854
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.trb.2016.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002115224
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.trc.2008.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014108527
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.tre.2011.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035451722
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/s1571-0661(04)80528-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042806771
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1287/inte.1030.0055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707825
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1287/inte.1070.0295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064708054
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1287/inte.25.3.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064709910
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1287/opre.2013.1254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064727957
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1287/opre.46.2.247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731033
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1287/opre.48.4.603.12416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731261
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1287/trsc.1080.0234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734270
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1287/trsc.11.1.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734344
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1287/trsc.1100.0348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734398
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1287/trsc.18.2.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734685
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1287/trsc.2013.0486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734832
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1287/trsc.26.4.263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064735234
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1287/trsc.32.4.330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064735476
    173 rdf:type schema:CreativeWork
    174 https://www.grid.ac/institutes/grid.181531.f schema:alternateName Beijing Jiaotong University
    175 schema:name Department of Urban Rail Traffic, School of Traffic and Transportation, Beijing Jiaotong University, 3 Shang Yuan Cun, Hai Dian District, 100044, Beijing, People’s Republic of China
    176 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, People’s Republic of China
    177 rdf:type schema:Organization
    178 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
    179 schema:name Technion-Israel Institute of Technology, Haifa, Israel
    180 Transportation Research Centre, Department of Civil and Environmental Engineering, 20 Symonds Street, University of Auckland, Auckland, New Zealand
    181 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...