A directional distance based super-efficiency DEA model handling negative data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11

AUTHORS

Ruiyue Lin, Zhiping Chen

ABSTRACT

This paper develops a new radial super-efficiency data envelopment analysis (DEA) model, which allows input–output variables to take both negative and positive values. Compared with existing DEA models capable of dealing with negative data, the proposed model can rank the efficient DMUs and is feasible no matter whether the input–output data are non-negative or not. It successfully addresses the infeasibility issue of both the conventional radial super-efficiency DEA model and the Nerlove–Luenberger super-efficiency DEA model under the assumption of variable returns to scale. Moreover, it can project each DMU onto the super-efficiency frontier along a suitable direction and never leads to worse target inputs or outputs than the original ones for inefficient DMUs. Additional advantages of the proposed model include monotonicity, units invariance and output translation invariance. Two numerical examples demonstrate the practicality and superiority of the new model. More... »

PAGES

1312-1322

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1057/s41274-016-0137-8

DOI

http://dx.doi.org/10.1057/s41274-016-0137-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043174607


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wenzhou University", 
          "id": "https://www.grid.ac/institutes/grid.412899.f", 
          "name": [
            "Department of Computing Science, School of Mathematics and Statistics, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi Province, People\u2019s Republic of China", 
            "School of Mathematics and Information Science, Wenzhou University, Higher Education Zone, 325035, Wenzhou, Zhejiang Province, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Ruiyue", 
        "id": "sg:person.011110015257.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011110015257.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "Department of Computing Science, School of Mathematics and Statistics, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi Province, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zhiping", 
        "id": "sg:person.016266240657.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266240657.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejor.2011.01.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002907454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2003.08.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003394653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.omega.2012.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008667771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(95)00044-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015485335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.econmod.2009.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020204513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.jors.2601768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020943228", 
          "https://doi.org/10.1057/palgrave.jors.2601768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/jors.2010.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021047748", 
          "https://doi.org/10.1057/jors.2010.108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.jors.2602318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021657512", 
          "https://doi.org/10.1057/palgrave.jors.2602318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(00)00160-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021686073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2013.10.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023746551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/jors.2014.118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025777704", 
          "https://doi.org/10.1057/jors.2014.118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.jors.2602544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026015237", 
          "https://doi.org/10.1057/palgrave.jors.2602544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/jors.2012.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027542733", 
          "https://doi.org/10.1057/jors.2012.22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2012.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028205687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02187295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033240367", 
          "https://doi.org/10.1007/bf02187295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02187295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033240367", 
          "https://doi.org/10.1007/bf02187295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2009.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034731691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01874734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035257693", 
          "https://doi.org/10.1007/bf01874734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(90)90061-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038626095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6377(90)90061-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038626095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03155986.1999.11732379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045648217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(78)90138-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046333076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(78)90138-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046333076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-008-9503-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046568613", 
          "https://doi.org/10.1007/s10957-008-9503-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.jors.2602392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049122563", 
          "https://doi.org/10.1057/palgrave.jors.2602392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jeth.1996.0096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051835509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.30.9.1078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064719934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.39.10.1261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064721013"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "This paper develops a new radial super-efficiency data envelopment analysis (DEA) model, which allows input\u2013output variables to take both negative and positive values. Compared with existing DEA models capable of dealing with negative data, the proposed model can rank the efficient DMUs and is feasible no matter whether the input\u2013output data are non-negative or not. It successfully addresses the infeasibility issue of both the conventional radial super-efficiency DEA model and the Nerlove\u2013Luenberger super-efficiency DEA model under the assumption of variable returns to scale. Moreover, it can project each DMU onto the super-efficiency frontier along a suitable direction and never leads to worse target inputs or outputs than the original ones for inefficient DMUs. Additional advantages of the proposed model include monotonicity, units invariance and output translation invariance. Two numerical examples demonstrate the practicality and superiority of the new model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1057/s41274-016-0137-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7187350", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7010072", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1087747", 
        "issn": [
          "0160-5682", 
          "1476-9360"
        ], 
        "name": "Journal of the Operational Research Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "name": "A directional distance based super-efficiency DEA model handling negative data", 
    "pagination": "1312-1322", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cda7af9edc019436e8307446b0d2462428e53ec2373df1e887cecbf83e57ee91"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1057/s41274-016-0137-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043174607"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1057/s41274-016-0137-8", 
      "https://app.dimensions.ai/details/publication/pub.1043174607"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1057/s41274-016-0137-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1057/s41274-016-0137-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1057/s41274-016-0137-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1057/s41274-016-0137-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1057/s41274-016-0137-8'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1057/s41274-016-0137-8 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N041171b9939647e9b976478a46ca3f7f
4 schema:citation sg:pub.10.1007/bf01874734
5 sg:pub.10.1007/bf02187295
6 sg:pub.10.1007/s10957-008-9503-2
7 sg:pub.10.1057/jors.2010.108
8 sg:pub.10.1057/jors.2012.22
9 sg:pub.10.1057/jors.2014.118
10 sg:pub.10.1057/palgrave.jors.2601768
11 sg:pub.10.1057/palgrave.jors.2602318
12 sg:pub.10.1057/palgrave.jors.2602392
13 sg:pub.10.1057/palgrave.jors.2602544
14 https://doi.org/10.1006/jeth.1996.0096
15 https://doi.org/10.1016/0167-6377(90)90061-9
16 https://doi.org/10.1016/0167-6377(95)00044-5
17 https://doi.org/10.1016/0377-2217(78)90138-8
18 https://doi.org/10.1016/j.econmod.2009.01.007
19 https://doi.org/10.1016/j.ejor.2003.08.060
20 https://doi.org/10.1016/j.ejor.2009.01.001
21 https://doi.org/10.1016/j.ejor.2011.01.022
22 https://doi.org/10.1016/j.ejor.2012.09.031
23 https://doi.org/10.1016/j.ejor.2013.10.067
24 https://doi.org/10.1016/j.omega.2012.06.006
25 https://doi.org/10.1016/s0377-2217(00)00160-0
26 https://doi.org/10.1080/03155986.1999.11732379
27 https://doi.org/10.1287/mnsc.30.9.1078
28 https://doi.org/10.1287/mnsc.39.10.1261
29 schema:datePublished 2017-11
30 schema:datePublishedReg 2017-11-01
31 schema:description This paper develops a new radial super-efficiency data envelopment analysis (DEA) model, which allows input–output variables to take both negative and positive values. Compared with existing DEA models capable of dealing with negative data, the proposed model can rank the efficient DMUs and is feasible no matter whether the input–output data are non-negative or not. It successfully addresses the infeasibility issue of both the conventional radial super-efficiency DEA model and the Nerlove–Luenberger super-efficiency DEA model under the assumption of variable returns to scale. Moreover, it can project each DMU onto the super-efficiency frontier along a suitable direction and never leads to worse target inputs or outputs than the original ones for inefficient DMUs. Additional advantages of the proposed model include monotonicity, units invariance and output translation invariance. Two numerical examples demonstrate the practicality and superiority of the new model.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N8e17eb61fdbb4792b42e6df89798e395
36 Nb0ba985a9a8745db81095cbc2fc318bc
37 sg:journal.1087747
38 schema:name A directional distance based super-efficiency DEA model handling negative data
39 schema:pagination 1312-1322
40 schema:productId N56f01208060049fb90611206ebb3e37e
41 N963c149fa91549b2ada11804b8946c66
42 Nb6ddda2a6d0b4aca941dc4c75f749503
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043174607
44 https://doi.org/10.1057/s41274-016-0137-8
45 schema:sdDatePublished 2019-04-10T18:19
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nb406b9e13ee0475abc76aaece30b98da
48 schema:url http://link.springer.com/10.1057/s41274-016-0137-8
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N041171b9939647e9b976478a46ca3f7f rdf:first sg:person.011110015257.43
53 rdf:rest Nc1beea33fae641c4bd7f799b829a053a
54 N56f01208060049fb90611206ebb3e37e schema:name readcube_id
55 schema:value cda7af9edc019436e8307446b0d2462428e53ec2373df1e887cecbf83e57ee91
56 rdf:type schema:PropertyValue
57 N8e17eb61fdbb4792b42e6df89798e395 schema:issueNumber 11
58 rdf:type schema:PublicationIssue
59 N963c149fa91549b2ada11804b8946c66 schema:name doi
60 schema:value 10.1057/s41274-016-0137-8
61 rdf:type schema:PropertyValue
62 Nb0ba985a9a8745db81095cbc2fc318bc schema:volumeNumber 68
63 rdf:type schema:PublicationVolume
64 Nb406b9e13ee0475abc76aaece30b98da schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nb6ddda2a6d0b4aca941dc4c75f749503 schema:name dimensions_id
67 schema:value pub.1043174607
68 rdf:type schema:PropertyValue
69 Nc1beea33fae641c4bd7f799b829a053a rdf:first sg:person.016266240657.60
70 rdf:rest rdf:nil
71 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
72 schema:name Economics
73 rdf:type schema:DefinedTerm
74 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
75 schema:name Applied Economics
76 rdf:type schema:DefinedTerm
77 sg:grant.7010072 http://pending.schema.org/fundedItem sg:pub.10.1057/s41274-016-0137-8
78 rdf:type schema:MonetaryGrant
79 sg:grant.7187350 http://pending.schema.org/fundedItem sg:pub.10.1057/s41274-016-0137-8
80 rdf:type schema:MonetaryGrant
81 sg:journal.1087747 schema:issn 0160-5682
82 1476-9360
83 schema:name Journal of the Operational Research Society
84 rdf:type schema:Periodical
85 sg:person.011110015257.43 schema:affiliation https://www.grid.ac/institutes/grid.412899.f
86 schema:familyName Lin
87 schema:givenName Ruiyue
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011110015257.43
89 rdf:type schema:Person
90 sg:person.016266240657.60 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
91 schema:familyName Chen
92 schema:givenName Zhiping
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266240657.60
94 rdf:type schema:Person
95 sg:pub.10.1007/bf01874734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035257693
96 https://doi.org/10.1007/bf01874734
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02187295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033240367
99 https://doi.org/10.1007/bf02187295
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s10957-008-9503-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046568613
102 https://doi.org/10.1007/s10957-008-9503-2
103 rdf:type schema:CreativeWork
104 sg:pub.10.1057/jors.2010.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021047748
105 https://doi.org/10.1057/jors.2010.108
106 rdf:type schema:CreativeWork
107 sg:pub.10.1057/jors.2012.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027542733
108 https://doi.org/10.1057/jors.2012.22
109 rdf:type schema:CreativeWork
110 sg:pub.10.1057/jors.2014.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025777704
111 https://doi.org/10.1057/jors.2014.118
112 rdf:type schema:CreativeWork
113 sg:pub.10.1057/palgrave.jors.2601768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020943228
114 https://doi.org/10.1057/palgrave.jors.2601768
115 rdf:type schema:CreativeWork
116 sg:pub.10.1057/palgrave.jors.2602318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021657512
117 https://doi.org/10.1057/palgrave.jors.2602318
118 rdf:type schema:CreativeWork
119 sg:pub.10.1057/palgrave.jors.2602392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049122563
120 https://doi.org/10.1057/palgrave.jors.2602392
121 rdf:type schema:CreativeWork
122 sg:pub.10.1057/palgrave.jors.2602544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026015237
123 https://doi.org/10.1057/palgrave.jors.2602544
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1006/jeth.1996.0096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051835509
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0167-6377(90)90061-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038626095
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0167-6377(95)00044-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015485335
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0377-2217(78)90138-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046333076
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.econmod.2009.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020204513
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ejor.2003.08.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003394653
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ejor.2009.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034731691
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ejor.2011.01.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002907454
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ejor.2012.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028205687
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ejor.2013.10.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023746551
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.omega.2012.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008667771
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0377-2217(00)00160-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021686073
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1080/03155986.1999.11732379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045648217
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1287/mnsc.30.9.1078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064719934
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1287/mnsc.39.10.1261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064721013
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.412899.f schema:alternateName Wenzhou University
156 schema:name Department of Computing Science, School of Mathematics and Statistics, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi Province, People’s Republic of China
157 School of Mathematics and Information Science, Wenzhou University, Higher Education Zone, 325035, Wenzhou, Zhejiang Province, People’s Republic of China
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
160 schema:name Department of Computing Science, School of Mathematics and Statistics, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi Province, People’s Republic of China
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...