General-purpose coordinator–master–worker model for efficient large-scale simulation over heterogeneous infrastructure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-09

AUTHORS

Bilel Ben Romdhanne, Navid Nikaein

ABSTRACT

In this work, we propose a general-purpose coordinator–master–worker (GP-CMW) model to enable efficient and scalable simulation. The model supports distributed and parallel simulation over a heterogeneous computing node architecture with both multi-core CPUs and GPUs. The model aims at maximizing the hardware activity rate while reducing the overall management overhead. The proposed model includes five components: coordinator, priority abstraction layer, master, hardware abstraction layer, and worker. The proposed model is mainly optimized for large-scale simulation that relies on massive parallelizable events. Extensive set of experimental results shows that GP-CMW provides a significant gain from medium to intensive simulation load by exploiting heterogeneous computing resources including CPU and GPU. Regarding simulation runtime, the proposed GP-CMW model delivers a speedup that is 3.6 times faster than the CMW model. More... »

PAGES

228-241

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1057/s41273-016-0044-7

DOI

http://dx.doi.org/10.1057/s41273-016-0044-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026836219


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Eurecom, Campus SophiaTech, 450 Route des Chappes, 06410, Biot Sophia-Antipolis, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "Eurecom, Campus SophiaTech, 450 Route des Chappes, 06410, Biot Sophia-Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romdhanne", 
        "givenName": "Bilel Ben", 
        "id": "sg:person.010422775351.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010422775351.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eurecom, Campus SophiaTech, 450 Route des Chappes, 06410, Biot Sophia-Antipolis, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "Eurecom, Campus SophiaTech, 450 Route des Chappes, 06410, Biot Sophia-Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikaein", 
        "givenName": "Navid", 
        "id": "sg:person.012102772721.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012102772721.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10586-012-0201-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009630978", 
          "https://doi.org/10.1007/s10586-012-0201-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-55224-3_52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008091800", 
          "https://doi.org/10.1007/978-3-642-55224-3_52"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/10968987_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022090102", 
          "https://doi.org/10.1007/10968987_12"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-09", 
    "datePublishedReg": "2017-01-09", 
    "description": "In this work, we propose a general-purpose coordinator\u2013master\u2013worker (GP-CMW) model to enable efficient and scalable simulation. The model supports distributed and parallel simulation over a heterogeneous computing node architecture with both multi-core CPUs and GPUs. The model aims at maximizing the hardware activity rate while reducing the overall management overhead. The proposed model includes five components: coordinator, priority abstraction layer, master, hardware abstraction layer, and worker. The proposed model is mainly optimized for large-scale simulation that relies on massive parallelizable events. Extensive set of experimental results shows that GP-CMW provides a significant gain from medium to intensive simulation load by exploiting heterogeneous computing resources including CPU and GPU. Regarding simulation runtime, the proposed GP-CMW model delivers a speedup that is 3.6 times faster than the CMW model.", 
    "genre": "article", 
    "id": "sg:pub.10.1057/s41273-016-0044-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136305", 
        "issn": [
          "1747-7778", 
          "1747-7786"
        ], 
        "name": "Journal of Simulation", 
        "publisher": "Taylor & Francis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "large-scale simulations", 
      "abstraction layer", 
      "multi-core CPUs", 
      "heterogeneous computing resources", 
      "hardware abstraction layer", 
      "efficient large-scale simulations", 
      "heterogeneous infrastructure", 
      "computing resources", 
      "scalable simulations", 
      "parallel simulation", 
      "simulation runtime", 
      "simulation load", 
      "worker model", 
      "node architecture", 
      "CMW model", 
      "GPU", 
      "CPU", 
      "extensive set", 
      "experimental results", 
      "significant gains", 
      "runtime", 
      "speedup", 
      "simulations", 
      "architecture", 
      "infrastructure", 
      "model", 
      "set", 
      "resources", 
      "coordinator", 
      "work", 
      "management", 
      "master", 
      "load", 
      "time", 
      "gain", 
      "layer", 
      "components", 
      "overall management", 
      "results", 
      "events", 
      "activity rates", 
      "medium", 
      "rate", 
      "workers", 
      "heterogeneous computing node architecture", 
      "computing node architecture", 
      "hardware activity rate", 
      "priority abstraction layer", 
      "massive parallelizable events", 
      "parallelizable events", 
      "GP-CMW", 
      "intensive simulation load", 
      "GP-CMW model"
    ], 
    "name": "General-purpose coordinator\u2013master\u2013worker model for efficient large-scale simulation over heterogeneous infrastructure", 
    "pagination": "228-241", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026836219"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1057/s41273-016-0044-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1057/s41273-016-0044-7", 
      "https://app.dimensions.ai/details/publication/pub.1026836219"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_755.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1057/s41273-016-0044-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1057/s41273-016-0044-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1057/s41273-016-0044-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1057/s41273-016-0044-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1057/s41273-016-0044-7'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      81 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1057/s41273-016-0044-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na092ccc316394b798a01894bb69530d8
4 schema:citation sg:pub.10.1007/10968987_12
5 sg:pub.10.1007/978-3-642-55224-3_52
6 sg:pub.10.1007/s10586-012-0201-3
7 schema:datePublished 2017-01-09
8 schema:datePublishedReg 2017-01-09
9 schema:description In this work, we propose a general-purpose coordinator–master–worker (GP-CMW) model to enable efficient and scalable simulation. The model supports distributed and parallel simulation over a heterogeneous computing node architecture with both multi-core CPUs and GPUs. The model aims at maximizing the hardware activity rate while reducing the overall management overhead. The proposed model includes five components: coordinator, priority abstraction layer, master, hardware abstraction layer, and worker. The proposed model is mainly optimized for large-scale simulation that relies on massive parallelizable events. Extensive set of experimental results shows that GP-CMW provides a significant gain from medium to intensive simulation load by exploiting heterogeneous computing resources including CPU and GPU. Regarding simulation runtime, the proposed GP-CMW model delivers a speedup that is 3.6 times faster than the CMW model.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N4f343c56479a4720a99f9ca032bb157b
14 Nbce4c1720b0d487fb0b85771fc470d59
15 sg:journal.1136305
16 schema:keywords CMW model
17 CPU
18 GP-CMW
19 GP-CMW model
20 GPU
21 abstraction layer
22 activity rates
23 architecture
24 components
25 computing node architecture
26 computing resources
27 coordinator
28 efficient large-scale simulations
29 events
30 experimental results
31 extensive set
32 gain
33 hardware abstraction layer
34 hardware activity rate
35 heterogeneous computing node architecture
36 heterogeneous computing resources
37 heterogeneous infrastructure
38 infrastructure
39 intensive simulation load
40 large-scale simulations
41 layer
42 load
43 management
44 massive parallelizable events
45 master
46 medium
47 model
48 multi-core CPUs
49 node architecture
50 overall management
51 parallel simulation
52 parallelizable events
53 priority abstraction layer
54 rate
55 resources
56 results
57 runtime
58 scalable simulations
59 set
60 significant gains
61 simulation load
62 simulation runtime
63 simulations
64 speedup
65 time
66 work
67 worker model
68 workers
69 schema:name General-purpose coordinator–master–worker model for efficient large-scale simulation over heterogeneous infrastructure
70 schema:pagination 228-241
71 schema:productId Nce90cec60abd466a8e728a51e54ee193
72 Nd2262b10b0644c8c97554dbf32ac29ac
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026836219
74 https://doi.org/10.1057/s41273-016-0044-7
75 schema:sdDatePublished 2021-12-01T19:41
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N3906eca8ead94a4ebbdc7148d940512c
78 schema:url https://doi.org/10.1057/s41273-016-0044-7
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N3906eca8ead94a4ebbdc7148d940512c schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N4f343c56479a4720a99f9ca032bb157b schema:volumeNumber 11
85 rdf:type schema:PublicationVolume
86 N7173b0a2e0c44c93a1ac61d1141787e7 rdf:first sg:person.012102772721.53
87 rdf:rest rdf:nil
88 Na092ccc316394b798a01894bb69530d8 rdf:first sg:person.010422775351.07
89 rdf:rest N7173b0a2e0c44c93a1ac61d1141787e7
90 Nbce4c1720b0d487fb0b85771fc470d59 schema:issueNumber 3
91 rdf:type schema:PublicationIssue
92 Nce90cec60abd466a8e728a51e54ee193 schema:name dimensions_id
93 schema:value pub.1026836219
94 rdf:type schema:PropertyValue
95 Nd2262b10b0644c8c97554dbf32ac29ac schema:name doi
96 schema:value 10.1057/s41273-016-0044-7
97 rdf:type schema:PropertyValue
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
102 schema:name Artificial Intelligence and Image Processing
103 rdf:type schema:DefinedTerm
104 sg:journal.1136305 schema:issn 1747-7778
105 1747-7786
106 schema:name Journal of Simulation
107 schema:publisher Taylor & Francis
108 rdf:type schema:Periodical
109 sg:person.010422775351.07 schema:affiliation grid-institutes:grid.28848.3e
110 schema:familyName Romdhanne
111 schema:givenName Bilel Ben
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010422775351.07
113 rdf:type schema:Person
114 sg:person.012102772721.53 schema:affiliation grid-institutes:grid.28848.3e
115 schema:familyName Nikaein
116 schema:givenName Navid
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012102772721.53
118 rdf:type schema:Person
119 sg:pub.10.1007/10968987_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022090102
120 https://doi.org/10.1007/10968987_12
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-3-642-55224-3_52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008091800
123 https://doi.org/10.1007/978-3-642-55224-3_52
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10586-012-0201-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009630978
126 https://doi.org/10.1007/s10586-012-0201-3
127 rdf:type schema:CreativeWork
128 grid-institutes:grid.28848.3e schema:alternateName Eurecom, Campus SophiaTech, 450 Route des Chappes, 06410, Biot Sophia-Antipolis, France
129 schema:name Eurecom, Campus SophiaTech, 450 Route des Chappes, 06410, Biot Sophia-Antipolis, France
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...