Predicting a tennis match in progress for sports multimedia View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09

AUTHORS

Tristan Barnett, Darren O'Shaughnessy, Anthony Bedford

ABSTRACT

This article demonstrates how spreadsheets can generate the probability of winning a tennis match conditional on the state of the match. Previous models treat games, sets and matches independently. We show how a series of interconnected sheets can be used to repeat these results. The sheets are used in multimedia to predict outcomes for a match in progress, where it is shown how these predictions could benefit the spectator, punter, player and commentator. The development of the predictions could also form an interesting and useful teaching example, and allow students to investigate the properties of tennis scoring systems. More... »

PAGES

190-204

Journal

TITLE

OR Insight

ISSUE

3

VOLUME

24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1057/ori.2011.7

DOI

http://dx.doi.org/10.1057/ori.2011.7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044055042


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of South Australia", 
          "id": "https://www.grid.ac/institutes/grid.1026.5", 
          "name": [
            "School of Mathematics and Statistics, University of South Australia, 1/11 Findon Street, 3122, Hawthorn, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barnett", 
        "givenName": "Tristan", 
        "id": "sg:person.01104151510.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104151510.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ranking Software, 3 Wootoona Court, 3170, Mulgrave, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O'Shaughnessy", 
        "givenName": "Darren", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Mathematical and Geospatial Sciences, RMIT University, Plenty Rd, 3083, Bundoora, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bedford", 
        "givenName": "Anthony", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1467-842x.1983.tb01222.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006848034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02701367.1986.10605384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012617255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imaman/dpi001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059683883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109725868", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420057669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109725868"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09", 
    "datePublishedReg": "2011-09-01", 
    "description": "This article demonstrates how spreadsheets can generate the probability of winning a tennis match conditional on the state of the match. Previous models treat games, sets and matches independently. We show how a series of interconnected sheets can be used to repeat these results. The sheets are used in multimedia to predict outcomes for a match in progress, where it is shown how these predictions could benefit the spectator, punter, player and commentator. The development of the predictions could also form an interesting and useful teaching example, and allow students to investigate the properties of tennis scoring systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1057/ori.2011.7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136788", 
        "issn": [
          "0953-5543", 
          "1759-0477"
        ], 
        "name": "OR Insight", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Predicting a tennis match in progress for sports multimedia", 
    "pagination": "190-204", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d1d97e8c66e013b7e060b5f19e2b3880f5c4623e08db5f368cb4cfd65d8d821e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1057/ori.2011.7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044055042"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1057/ori.2011.7", 
      "https://app.dimensions.ai/details/publication/pub.1044055042"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000593.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1057/ori.2011.7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1057/ori.2011.7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1057/ori.2011.7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1057/ori.2011.7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1057/ori.2011.7'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1057/ori.2011.7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N5501874086a94f44acf6c2bbc998e864
4 schema:citation https://app.dimensions.ai/details/publication/pub.1109725868
5 https://doi.org/10.1080/02701367.1986.10605384
6 https://doi.org/10.1093/imaman/dpi001
7 https://doi.org/10.1111/j.1467-842x.1983.tb01222.x
8 https://doi.org/10.1201/9781420057669
9 schema:datePublished 2011-09
10 schema:datePublishedReg 2011-09-01
11 schema:description This article demonstrates how spreadsheets can generate the probability of winning a tennis match conditional on the state of the match. Previous models treat games, sets and matches independently. We show how a series of interconnected sheets can be used to repeat these results. The sheets are used in multimedia to predict outcomes for a match in progress, where it is shown how these predictions could benefit the spectator, punter, player and commentator. The development of the predictions could also form an interesting and useful teaching example, and allow students to investigate the properties of tennis scoring systems.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N0d94be34e84e445389b08ec04dfcf935
16 N15ce9f0d64114cf8b0e154c54a2f1683
17 sg:journal.1136788
18 schema:name Predicting a tennis match in progress for sports multimedia
19 schema:pagination 190-204
20 schema:productId N591504aaf6324408a35370fcf20c95a8
21 N6137bebf2f324b339fe851a1ef5aeb59
22 N685494d900e54e9eab2f0366a32dfcd7
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044055042
24 https://doi.org/10.1057/ori.2011.7
25 schema:sdDatePublished 2019-04-10T23:38
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N31107b034ae04660847a93ff0a3dc5bd
28 schema:url http://link.springer.com/10.1057/ori.2011.7
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N0d94be34e84e445389b08ec04dfcf935 schema:issueNumber 3
33 rdf:type schema:PublicationIssue
34 N15ce9f0d64114cf8b0e154c54a2f1683 schema:volumeNumber 24
35 rdf:type schema:PublicationVolume
36 N31107b034ae04660847a93ff0a3dc5bd schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N5501874086a94f44acf6c2bbc998e864 rdf:first sg:person.01104151510.07
39 rdf:rest Nf78018475f57469f80d0e99b3b074db8
40 N57ce3df66871498ebed7ed98121ea546 schema:affiliation Nc5b76bf5ba3a42d0a6204d28c4ef6b08
41 schema:familyName O'Shaughnessy
42 schema:givenName Darren
43 rdf:type schema:Person
44 N591504aaf6324408a35370fcf20c95a8 schema:name readcube_id
45 schema:value d1d97e8c66e013b7e060b5f19e2b3880f5c4623e08db5f368cb4cfd65d8d821e
46 rdf:type schema:PropertyValue
47 N6137bebf2f324b339fe851a1ef5aeb59 schema:name doi
48 schema:value 10.1057/ori.2011.7
49 rdf:type schema:PropertyValue
50 N685494d900e54e9eab2f0366a32dfcd7 schema:name dimensions_id
51 schema:value pub.1044055042
52 rdf:type schema:PropertyValue
53 N747e8ef05ce64f638e1daa171f93c23c schema:affiliation https://www.grid.ac/institutes/grid.1017.7
54 schema:familyName Bedford
55 schema:givenName Anthony
56 rdf:type schema:Person
57 N77a58fb5410542a981df2052d3c5e3ff rdf:first N747e8ef05ce64f638e1daa171f93c23c
58 rdf:rest rdf:nil
59 Nc5b76bf5ba3a42d0a6204d28c4ef6b08 schema:name Ranking Software, 3 Wootoona Court, 3170, Mulgrave, Australia
60 rdf:type schema:Organization
61 Nf78018475f57469f80d0e99b3b074db8 rdf:first N57ce3df66871498ebed7ed98121ea546
62 rdf:rest N77a58fb5410542a981df2052d3c5e3ff
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
67 schema:name Statistics
68 rdf:type schema:DefinedTerm
69 sg:journal.1136788 schema:issn 0953-5543
70 1759-0477
71 schema:name OR Insight
72 rdf:type schema:Periodical
73 sg:person.01104151510.07 schema:affiliation https://www.grid.ac/institutes/grid.1026.5
74 schema:familyName Barnett
75 schema:givenName Tristan
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104151510.07
77 rdf:type schema:Person
78 https://app.dimensions.ai/details/publication/pub.1109725868 schema:CreativeWork
79 https://doi.org/10.1080/02701367.1986.10605384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012617255
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1093/imaman/dpi001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059683883
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1111/j.1467-842x.1983.tb01222.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006848034
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1201/9781420057669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725868
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.1017.7 schema:alternateName RMIT University
88 schema:name School of Mathematical and Geospatial Sciences, RMIT University, Plenty Rd, 3083, Bundoora, VIC, Australia
89 rdf:type schema:Organization
90 https://www.grid.ac/institutes/grid.1026.5 schema:alternateName University of South Australia
91 schema:name School of Mathematics and Statistics, University of South Australia, 1/11 Findon Street, 3122, Hawthorn, VIC, Australia
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...