The Simplex and the Dual Method for Quadratic Programming View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1964-12

AUTHORS

C. van de Panne, Andrew Whinston

ABSTRACT

The paper presents a straightforward generalization of the Simplex and the dual method for linear programming to the case of convex quadratic programming. The two algorithms, called the Simplex and the dual method for quadratic programming, are applicable when the matrix of the quadratic part of the objective function, in case this function is to be maximized, is negative definite, negative semi-definite or zero; in the last case the two methods are equivalent to an application of the similar methods for linear programming. The paper gives an exposition of the methods as well as examples and interpretations. The relations with linear programming methods are considered and some starting procedures in case no initial feasible solution is available are presented. More... »

PAGES

355-388

Identifiers

URI

http://scigraph.springernature.com/pub.10.1057/jors.1964.60

DOI

http://dx.doi.org/10.1057/jors.1964.60

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031956823


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "van de Panne", 
        "givenName": "C.", 
        "id": "sg:person.010613202261.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613202261.08"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Whinston", 
        "givenName": "Andrew", 
        "id": "sg:person.016337215055.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337215055.21"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1964-12", 
    "datePublishedReg": "1964-12-01", 
    "description": "The paper presents a straightforward generalization of the Simplex and the dual method for linear programming to the case of convex quadratic programming. The two algorithms, called the Simplex and the dual method for quadratic programming, are applicable when the matrix of the quadratic part of the objective function, in case this function is to be maximized, is negative definite, negative semi-definite or zero; in the last case the two methods are equivalent to an application of the similar methods for linear programming. The paper gives an exposition of the methods as well as examples and interpretations. The relations with linear programming methods are considered and some starting procedures in case no initial feasible solution is available are presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1057/jors.1964.60", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087747", 
        "issn": [
          "0160-5682", 
          "1476-9360"
        ], 
        "name": "Journal of the Operational Research Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "The Simplex and the Dual Method for Quadratic Programming", 
    "pagination": "355-388", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "983cb67f1fe35ba1db57af876755ebbb0f134c3d92467513a6e7d744c5ae5bc8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1057/jors.1964.60"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031956823"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1057/jors.1964.60", 
      "https://app.dimensions.ai/details/publication/pub.1031956823"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1057/jors.1964.60"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1057/jors.1964.60'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1057/jors.1964.60'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1057/jors.1964.60'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1057/jors.1964.60'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1057/jors.1964.60 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author Nd770dc27a6b346bb8e8a0c34fc63eb8f
4 schema:datePublished 1964-12
5 schema:datePublishedReg 1964-12-01
6 schema:description The paper presents a straightforward generalization of the Simplex and the dual method for linear programming to the case of convex quadratic programming. The two algorithms, called the Simplex and the dual method for quadratic programming, are applicable when the matrix of the quadratic part of the objective function, in case this function is to be maximized, is negative definite, negative semi-definite or zero; in the last case the two methods are equivalent to an application of the similar methods for linear programming. The paper gives an exposition of the methods as well as examples and interpretations. The relations with linear programming methods are considered and some starting procedures in case no initial feasible solution is available are presented.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N55008fb0a13143c3846c9e9f3a198798
11 N8442e44d4ac34a1883b8b68bf4a8ceb6
12 sg:journal.1087747
13 schema:name The Simplex and the Dual Method for Quadratic Programming
14 schema:pagination 355-388
15 schema:productId N5544d9818055443a841439bfd0dc7a27
16 N6453e9d64a884b21a215195354740b8c
17 Nc7338cb4d1a64fe0b10a8181bee68940
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031956823
19 https://doi.org/10.1057/jors.1964.60
20 schema:sdDatePublished 2019-04-10T15:48
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N032838a7021042b496de5e6a7af6d2c0
23 schema:url http://link.springer.com/10.1057/jors.1964.60
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N032838a7021042b496de5e6a7af6d2c0 schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N4f1c2771cf7e4080a2ae33d40a7be690 rdf:first sg:person.016337215055.21
30 rdf:rest rdf:nil
31 N55008fb0a13143c3846c9e9f3a198798 schema:volumeNumber 15
32 rdf:type schema:PublicationVolume
33 N5544d9818055443a841439bfd0dc7a27 schema:name dimensions_id
34 schema:value pub.1031956823
35 rdf:type schema:PropertyValue
36 N6453e9d64a884b21a215195354740b8c schema:name doi
37 schema:value 10.1057/jors.1964.60
38 rdf:type schema:PropertyValue
39 N8442e44d4ac34a1883b8b68bf4a8ceb6 schema:issueNumber 4
40 rdf:type schema:PublicationIssue
41 Nc7338cb4d1a64fe0b10a8181bee68940 schema:name readcube_id
42 schema:value 983cb67f1fe35ba1db57af876755ebbb0f134c3d92467513a6e7d744c5ae5bc8
43 rdf:type schema:PropertyValue
44 Nd770dc27a6b346bb8e8a0c34fc63eb8f rdf:first sg:person.010613202261.08
45 rdf:rest N4f1c2771cf7e4080a2ae33d40a7be690
46 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
47 schema:name Information and Computing Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
50 schema:name Computer Software
51 rdf:type schema:DefinedTerm
52 sg:journal.1087747 schema:issn 0160-5682
53 1476-9360
54 schema:name Journal of the Operational Research Society
55 rdf:type schema:Periodical
56 sg:person.010613202261.08 schema:familyName van de Panne
57 schema:givenName C.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613202261.08
59 rdf:type schema:Person
60 sg:person.016337215055.21 schema:familyName Whinston
61 schema:givenName Andrew
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337215055.21
63 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...