The Simplex and the Dual Method for Quadratic Programming View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1964-12

AUTHORS

C. van de Panne, Andrew Whinston

ABSTRACT

The paper presents a straightforward generalization of the Simplex and the dual method for linear programming to the case of convex quadratic programming. The two algorithms, called the Simplex and the dual method for quadratic programming, are applicable when the matrix of the quadratic part of the objective function, in case this function is to be maximized, is negative definite, negative semi-definite or zero; in the last case the two methods are equivalent to an application of the similar methods for linear programming. The paper gives an exposition of the methods as well as examples and interpretations. The relations with linear programming methods are considered and some starting procedures in case no initial feasible solution is available are presented. More... »

PAGES

355-388

Identifiers

URI

http://scigraph.springernature.com/pub.10.1057/jors.1964.60

DOI

http://dx.doi.org/10.1057/jors.1964.60

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031956823


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "van de Panne", 
        "givenName": "C.", 
        "id": "sg:person.010613202261.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613202261.08"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Whinston", 
        "givenName": "Andrew", 
        "id": "sg:person.016337215055.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337215055.21"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1964-12", 
    "datePublishedReg": "1964-12-01", 
    "description": "The paper presents a straightforward generalization of the Simplex and the dual method for linear programming to the case of convex quadratic programming. The two algorithms, called the Simplex and the dual method for quadratic programming, are applicable when the matrix of the quadratic part of the objective function, in case this function is to be maximized, is negative definite, negative semi-definite or zero; in the last case the two methods are equivalent to an application of the similar methods for linear programming. The paper gives an exposition of the methods as well as examples and interpretations. The relations with linear programming methods are considered and some starting procedures in case no initial feasible solution is available are presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1057/jors.1964.60", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087747", 
        "issn": [
          "0160-5682", 
          "1476-9360"
        ], 
        "name": "Journal of the Operational Research Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "The Simplex and the Dual Method for Quadratic Programming", 
    "pagination": "355-388", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "983cb67f1fe35ba1db57af876755ebbb0f134c3d92467513a6e7d744c5ae5bc8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1057/jors.1964.60"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031956823"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1057/jors.1964.60", 
      "https://app.dimensions.ai/details/publication/pub.1031956823"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1057/jors.1964.60"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1057/jors.1964.60'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1057/jors.1964.60'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1057/jors.1964.60'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1057/jors.1964.60'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1057/jors.1964.60 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author N7bde36f039b34152a9e982d044684bc6
4 schema:datePublished 1964-12
5 schema:datePublishedReg 1964-12-01
6 schema:description The paper presents a straightforward generalization of the Simplex and the dual method for linear programming to the case of convex quadratic programming. The two algorithms, called the Simplex and the dual method for quadratic programming, are applicable when the matrix of the quadratic part of the objective function, in case this function is to be maximized, is negative definite, negative semi-definite or zero; in the last case the two methods are equivalent to an application of the similar methods for linear programming. The paper gives an exposition of the methods as well as examples and interpretations. The relations with linear programming methods are considered and some starting procedures in case no initial feasible solution is available are presented.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0fd8ac743c544cde96852ce01a69ac62
11 N35df419e31c5497fa9f39cbeb3c599c2
12 sg:journal.1087747
13 schema:name The Simplex and the Dual Method for Quadratic Programming
14 schema:pagination 355-388
15 schema:productId N2aa9c0f9f9734d49b4be905930d61549
16 N8dfdacf1d5674116bdaea607054c74e8
17 Nc5d9b790aa2c4d11a6d3d67792c886f5
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031956823
19 https://doi.org/10.1057/jors.1964.60
20 schema:sdDatePublished 2019-04-10T15:48
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nce4501d978924778aa70468dd7b825f1
23 schema:url http://link.springer.com/10.1057/jors.1964.60
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0fd8ac743c544cde96852ce01a69ac62 schema:issueNumber 4
28 rdf:type schema:PublicationIssue
29 N2aa9c0f9f9734d49b4be905930d61549 schema:name doi
30 schema:value 10.1057/jors.1964.60
31 rdf:type schema:PropertyValue
32 N35df419e31c5497fa9f39cbeb3c599c2 schema:volumeNumber 15
33 rdf:type schema:PublicationVolume
34 N4f3bfc7571d345cca545ebe04701351f rdf:first sg:person.016337215055.21
35 rdf:rest rdf:nil
36 N7bde36f039b34152a9e982d044684bc6 rdf:first sg:person.010613202261.08
37 rdf:rest N4f3bfc7571d345cca545ebe04701351f
38 N8dfdacf1d5674116bdaea607054c74e8 schema:name readcube_id
39 schema:value 983cb67f1fe35ba1db57af876755ebbb0f134c3d92467513a6e7d744c5ae5bc8
40 rdf:type schema:PropertyValue
41 Nc5d9b790aa2c4d11a6d3d67792c886f5 schema:name dimensions_id
42 schema:value pub.1031956823
43 rdf:type schema:PropertyValue
44 Nce4501d978924778aa70468dd7b825f1 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
47 schema:name Information and Computing Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
50 schema:name Computer Software
51 rdf:type schema:DefinedTerm
52 sg:journal.1087747 schema:issn 0160-5682
53 1476-9360
54 schema:name Journal of the Operational Research Society
55 rdf:type schema:Periodical
56 sg:person.010613202261.08 schema:familyName van de Panne
57 schema:givenName C.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613202261.08
59 rdf:type schema:Person
60 sg:person.016337215055.21 schema:familyName Whinston
61 schema:givenName Andrew
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337215055.21
63 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...