Ontology type: schema:ScholarlyArticle Open Access: True
2008-06
AUTHORSJ. A. Montes-Molina, M. Luna-Guido, J. M. Ceballos-Ramirez, F. Fernández-Luqueño, N. Espinoza-Paz, R. Rincón-Rosales, L. Dendooven, F. A. Gutierrez-Miceli
ABSTRACTExtracts of plants such as neem (Azadirachta indica A. Juss.) and mata-raton (Gliricidia sepium (Jacquin)) are used to control pests. However, certain components of neem, such as azadirachtin, can exert a negative effect on fungi and nitrifying bacteria, and, in turn, can impact the C and N cycles in soil. Nutrient cycling might thus be inhibited and affect the sustainability of an agricultural system in which plant extracts are used to control pests. Here, we investigated the effect of neem extract on microbial activity and N mineralization in soil. We studied the effect of neem and mata-raton leaf extracts on bean growth (Phaseolus vulgaris L.), nodule formation by Rhizobium, soil CO2 emissions and soil N dynamics. Four treatments were applied: (1) “neem treatment”: extracts of neem leaves, (2) “mata-raton treatment”: extracts of mata-raton, (3) “chemical treatment”: a chemical insecticide, lambda cyalothrin, and (4) “control”: untreated plants. Our results show that in non-amended soil the number of nodules in the neem treatment was 18 for beans cultivated. This nodule number was 2.1 times lower compared with the soil treated with lambda cyalothrin (chemical treatment). In manure-amended soil, the number of nodules was 28 in the neem treatment. This nodule number was 1.6 times lower than in the mata-raton treatment. This indicated that neem extracts inhibited Rhizobium in soil and nodule formation in bean. In the manure-amended soil, the emission of CO2 was 1.9 times lower in the neem-treated soil than in the other treatments. The increase in the concentration of NO3− was 1.03 mg N kg− soil day− in the neem treatment and 4.1 times lower compared with the other treatments. As such, microbial activity was inhibited by the neem extracts when added to the manure-amended soil. It was found that application of neem leaf extract inhibited microbial activity and reduced nodule formation in bean, but lambda cyalothrin or leaf extracts of Gliricidia sepium did not. More... »
PAGES187-194
http://scigraph.springernature.com/pub.10.1051/agro:2008002
DOIhttp://dx.doi.org/10.1051/agro:2008002
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1034398210
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Soil Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratory of Soil Ecology Dept. Biotechnology and Bioengineering, Cinvestav, Av. Instituto Polit\u00e9cnico Nacional 2508, C.P. 07360, Mexico D. F., Mexico",
"id": "http://www.grid.ac/institutes/grid.512574.0",
"name": [
"Laboratory of Soil Ecology Dept. Biotechnology and Bioengineering, Cinvestav, Av. Instituto Polit\u00e9cnico Nacional 2508, C.P. 07360, Mexico D. F., Mexico"
],
"type": "Organization"
},
"familyName": "Montes-Molina",
"givenName": "J. A.",
"id": "sg:person.01020335226.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020335226.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratory of Soil Ecology Dept. Biotechnology and Bioengineering, Cinvestav, Av. Instituto Polit\u00e9cnico Nacional 2508, C.P. 07360, Mexico D. F., Mexico",
"id": "http://www.grid.ac/institutes/grid.512574.0",
"name": [
"Laboratory of Soil Ecology Dept. Biotechnology and Bioengineering, Cinvestav, Av. Instituto Polit\u00e9cnico Nacional 2508, C.P. 07360, Mexico D. F., Mexico"
],
"type": "Organization"
},
"familyName": "Luna-Guido",
"givenName": "M.",
"id": "sg:person.0576477507.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576477507.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratory of Soil Ecology Dept. Biotechnology and Bioengineering, Cinvestav, Av. Instituto Polit\u00e9cnico Nacional 2508, C.P. 07360, Mexico D. F., Mexico",
"id": "http://www.grid.ac/institutes/grid.512574.0",
"name": [
"Laboratory of Soil Ecology Dept. Biotechnology and Bioengineering, Cinvestav, Av. Instituto Polit\u00e9cnico Nacional 2508, C.P. 07360, Mexico D. F., Mexico"
],
"type": "Organization"
},
"familyName": "Ceballos-Ramirez",
"givenName": "J. M.",
"id": "sg:person.011171633173.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171633173.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratory of Soil Ecology Dept. Biotechnology and Bioengineering, Cinvestav, Av. Instituto Polit\u00e9cnico Nacional 2508, C.P. 07360, Mexico D. F., Mexico",
"id": "http://www.grid.ac/institutes/grid.512574.0",
"name": [
"Laboratory of Soil Ecology Dept. Biotechnology and Bioengineering, Cinvestav, Av. Instituto Polit\u00e9cnico Nacional 2508, C.P. 07360, Mexico D. F., Mexico"
],
"type": "Organization"
},
"familyName": "Fern\u00e1ndez-Luque\u00f1o",
"givenName": "F.",
"id": "sg:person.0635773426.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635773426.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Campo Experimental Centro de Chiapas (CECECH), Instituto Nacional de Investigaciones Forestales Agr\u00edcolas y Pecuarias (INIFAP), Ocozocoautla de Espinoza, Chiapas, Mexico",
"id": "http://www.grid.ac/institutes/grid.473273.6",
"name": [
"Campo Experimental Centro de Chiapas (CECECH), Instituto Nacional de Investigaciones Forestales Agr\u00edcolas y Pecuarias (INIFAP), Ocozocoautla de Espinoza, Chiapas, Mexico"
],
"type": "Organization"
},
"familyName": "Espinoza-Paz",
"givenName": "N.",
"id": "sg:person.013424461643.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013424461643.57"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratory of Biotechnology, Instituto Tecnol\u00f3gico de Tuxtla-Guti\u00e9rrez, Tuxtla-Guti\u00e9rrez, Mexico",
"id": "http://www.grid.ac/institutes/grid.466853.a",
"name": [
"Laboratory of Biotechnology, Instituto Tecnol\u00f3gico de Tuxtla-Guti\u00e9rrez, Tuxtla-Guti\u00e9rrez, Mexico"
],
"type": "Organization"
},
"familyName": "Rinc\u00f3n-Rosales",
"givenName": "R.",
"id": "sg:person.0762616151.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762616151.32"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratory of Soil Ecology Dept. Biotechnology and Bioengineering, Cinvestav, Av. Instituto Polit\u00e9cnico Nacional 2508, C.P. 07360, Mexico D. F., Mexico",
"id": "http://www.grid.ac/institutes/grid.512574.0",
"name": [
"Laboratory of Soil Ecology Dept. Biotechnology and Bioengineering, Cinvestav, Av. Instituto Polit\u00e9cnico Nacional 2508, C.P. 07360, Mexico D. F., Mexico"
],
"type": "Organization"
},
"familyName": "Dendooven",
"givenName": "L.",
"id": "sg:person.01137236547.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137236547.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratory of Biotechnology, Instituto Tecnol\u00f3gico de Tuxtla-Guti\u00e9rrez, Tuxtla-Guti\u00e9rrez, Mexico",
"id": "http://www.grid.ac/institutes/grid.466853.a",
"name": [
"Laboratory of Biotechnology, Instituto Tecnol\u00f3gico de Tuxtla-Guti\u00e9rrez, Tuxtla-Guti\u00e9rrez, Mexico"
],
"type": "Organization"
},
"familyName": "Gutierrez-Miceli",
"givenName": "F. A.",
"id": "sg:person.0761041307.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761041307.61"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/a:1024146710611",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002247135",
"https://doi.org/10.1023/a:1024146710611"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10646-006-0099-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003855523",
"https://doi.org/10.1007/s10646-006-0099-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02981863",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020442251",
"https://doi.org/10.1007/bf02981863"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00116342",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032118091",
"https://doi.org/10.1007/bf00116342"
],
"type": "CreativeWork"
}
],
"datePublished": "2008-06",
"datePublishedReg": "2008-06-01",
"description": "Extracts of plants such as neem (Azadirachta indica A. Juss.) and mata-raton (Gliricidia sepium (Jacquin)) are used to control pests. However, certain components of neem, such as azadirachtin, can exert a negative effect on fungi and nitrifying bacteria, and, in turn, can impact the C and N cycles in soil. Nutrient cycling might thus be inhibited and affect the sustainability of an agricultural system in which plant extracts are used to control pests. Here, we investigated the effect of neem extract on microbial activity and N mineralization in soil. We studied the effect of neem and mata-raton leaf extracts on bean growth (Phaseolus vulgaris L.), nodule formation by Rhizobium, soil CO2 emissions and soil N dynamics. Four treatments were applied: (1) \u201cneem treatment\u201d: extracts of neem leaves, (2) \u201cmata-raton treatment\u201d: extracts of mata-raton, (3) \u201cchemical treatment\u201d: a chemical insecticide, lambda cyalothrin, and (4) \u201ccontrol\u201d: untreated plants. Our results show that in non-amended soil the number of nodules in the neem treatment was 18 for beans cultivated. This nodule number was 2.1 times lower compared with the soil treated with lambda cyalothrin (chemical treatment). In manure-amended soil, the number of nodules was 28 in the neem treatment. This nodule number was 1.6 times lower than in the mata-raton treatment. This indicated that neem extracts inhibited Rhizobium in soil and nodule formation in bean. In the manure-amended soil, the emission of CO2 was 1.9 times lower in the neem-treated soil than in the other treatments. The increase in the concentration of NO3\u2212 was 1.03 mg N kg\u2212 soil day\u2212 in the neem treatment and 4.1 times lower compared with the other treatments. As such, microbial activity was inhibited by the neem extracts when added to the manure-amended soil. It was found that application of neem leaf extract inhibited microbial activity and reduced nodule formation in bean, but lambda cyalothrin or leaf extracts of Gliricidia sepium did not.",
"genre": "article",
"id": "sg:pub.10.1051/agro:2008002",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1135950",
"issn": [
"1774-0746",
"1297-9643"
],
"name": "Agronomy for Sustainable Development",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "28"
}
],
"keywords": [
"microbial activity",
"nodule formation",
"number of nodules",
"nodule number",
"bean growth",
"neem treatment",
"soil N dynamics",
"nutrient cycling",
"untreated plants",
"neem extract",
"manure-amended soil",
"chemical insecticides",
"soil CO2 emissions",
"non-amended soil",
"extracts of plants",
"rhizobia",
"pests",
"Gliricidia sepium",
"soil N",
"agricultural systems",
"leaf extract",
"plants",
"Effect of Neem",
"bean",
"soil",
"neem",
"fungi",
"plant extracts",
"neem leaves",
"leaves",
"growth",
"neem leaf extract",
"negative effects",
"extract",
"bacteria",
"activity",
"sepium",
"insecticides",
"azadirachtin",
"formation",
"certain components",
"chemical treatment",
"cycling",
"number",
"nodules",
"cycle",
"mineralization",
"effect",
"dynamics",
"components",
"CO2",
"treatment",
"turn",
"emissions of CO2",
"concentration",
"CO2 emissions",
"control",
"increase",
"time",
"results",
"system",
"sustainability",
"emission",
"applications"
],
"name": "Effect of pest-controlling neem and mata-raton on bean growth, soil N and soil CO2 emissions",
"pagination": "187-194",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1034398210"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1051/agro:2008002"
]
}
],
"sameAs": [
"https://doi.org/10.1051/agro:2008002",
"https://app.dimensions.ai/details/publication/pub.1034398210"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:06",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_476.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1051/agro:2008002"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1051/agro:2008002'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1051/agro:2008002'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1051/agro:2008002'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1051/agro:2008002'
This table displays all metadata directly associated to this object as RDF triples.
193 TRIPLES
22 PREDICATES
94 URIs
82 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1051/agro:2008002 | schema:about | anzsrc-for:05 |
2 | ″ | ″ | anzsrc-for:0503 |
3 | ″ | schema:author | Nfc91a83dd53b4ad5a664cd319203c20e |
4 | ″ | schema:citation | sg:pub.10.1007/bf00116342 |
5 | ″ | ″ | sg:pub.10.1007/bf02981863 |
6 | ″ | ″ | sg:pub.10.1007/s10646-006-0099-8 |
7 | ″ | ″ | sg:pub.10.1023/a:1024146710611 |
8 | ″ | schema:datePublished | 2008-06 |
9 | ″ | schema:datePublishedReg | 2008-06-01 |
10 | ″ | schema:description | Extracts of plants such as neem (Azadirachta indica A. Juss.) and mata-raton (Gliricidia sepium (Jacquin)) are used to control pests. However, certain components of neem, such as azadirachtin, can exert a negative effect on fungi and nitrifying bacteria, and, in turn, can impact the C and N cycles in soil. Nutrient cycling might thus be inhibited and affect the sustainability of an agricultural system in which plant extracts are used to control pests. Here, we investigated the effect of neem extract on microbial activity and N mineralization in soil. We studied the effect of neem and mata-raton leaf extracts on bean growth (Phaseolus vulgaris L.), nodule formation by Rhizobium, soil CO2 emissions and soil N dynamics. Four treatments were applied: (1) “neem treatment”: extracts of neem leaves, (2) “mata-raton treatment”: extracts of mata-raton, (3) “chemical treatment”: a chemical insecticide, lambda cyalothrin, and (4) “control”: untreated plants. Our results show that in non-amended soil the number of nodules in the neem treatment was 18 for beans cultivated. This nodule number was 2.1 times lower compared with the soil treated with lambda cyalothrin (chemical treatment). In manure-amended soil, the number of nodules was 28 in the neem treatment. This nodule number was 1.6 times lower than in the mata-raton treatment. This indicated that neem extracts inhibited Rhizobium in soil and nodule formation in bean. In the manure-amended soil, the emission of CO2 was 1.9 times lower in the neem-treated soil than in the other treatments. The increase in the concentration of NO3− was 1.03 mg N kg− soil day− in the neem treatment and 4.1 times lower compared with the other treatments. As such, microbial activity was inhibited by the neem extracts when added to the manure-amended soil. It was found that application of neem leaf extract inhibited microbial activity and reduced nodule formation in bean, but lambda cyalothrin or leaf extracts of Gliricidia sepium did not. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | true |
14 | ″ | schema:isPartOf | N7a6d5ab8ac7b4e2f88aa4e555d6719e3 |
15 | ″ | ″ | N8931eebc667949d9a6e427b09ed8287b |
16 | ″ | ″ | sg:journal.1135950 |
17 | ″ | schema:keywords | CO2 |
18 | ″ | ″ | CO2 emissions |
19 | ″ | ″ | Effect of Neem |
20 | ″ | ″ | Gliricidia sepium |
21 | ″ | ″ | activity |
22 | ″ | ″ | agricultural systems |
23 | ″ | ″ | applications |
24 | ″ | ″ | azadirachtin |
25 | ″ | ″ | bacteria |
26 | ″ | ″ | bean |
27 | ″ | ″ | bean growth |
28 | ″ | ″ | certain components |
29 | ″ | ″ | chemical insecticides |
30 | ″ | ″ | chemical treatment |
31 | ″ | ″ | components |
32 | ″ | ″ | concentration |
33 | ″ | ″ | control |
34 | ″ | ″ | cycle |
35 | ″ | ″ | cycling |
36 | ″ | ″ | dynamics |
37 | ″ | ″ | effect |
38 | ″ | ″ | emission |
39 | ″ | ″ | emissions of CO2 |
40 | ″ | ″ | extract |
41 | ″ | ″ | extracts of plants |
42 | ″ | ″ | formation |
43 | ″ | ″ | fungi |
44 | ″ | ″ | growth |
45 | ″ | ″ | increase |
46 | ″ | ″ | insecticides |
47 | ″ | ″ | leaf extract |
48 | ″ | ″ | leaves |
49 | ″ | ″ | manure-amended soil |
50 | ″ | ″ | microbial activity |
51 | ″ | ″ | mineralization |
52 | ″ | ″ | neem |
53 | ″ | ″ | neem extract |
54 | ″ | ″ | neem leaf extract |
55 | ″ | ″ | neem leaves |
56 | ″ | ″ | neem treatment |
57 | ″ | ″ | negative effects |
58 | ″ | ″ | nodule formation |
59 | ″ | ″ | nodule number |
60 | ″ | ″ | nodules |
61 | ″ | ″ | non-amended soil |
62 | ″ | ″ | number |
63 | ″ | ″ | number of nodules |
64 | ″ | ″ | nutrient cycling |
65 | ″ | ″ | pests |
66 | ″ | ″ | plant extracts |
67 | ″ | ″ | plants |
68 | ″ | ″ | results |
69 | ″ | ″ | rhizobia |
70 | ″ | ″ | sepium |
71 | ″ | ″ | soil |
72 | ″ | ″ | soil CO2 emissions |
73 | ″ | ″ | soil N |
74 | ″ | ″ | soil N dynamics |
75 | ″ | ″ | sustainability |
76 | ″ | ″ | system |
77 | ″ | ″ | time |
78 | ″ | ″ | treatment |
79 | ″ | ″ | turn |
80 | ″ | ″ | untreated plants |
81 | ″ | schema:name | Effect of pest-controlling neem and mata-raton on bean growth, soil N and soil CO2 emissions |
82 | ″ | schema:pagination | 187-194 |
83 | ″ | schema:productId | N5a001b4cc7a04e329bd7106c7ee56789 |
84 | ″ | ″ | N6d77d85b626e47868cd5b09bbfe734d0 |
85 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034398210 |
86 | ″ | ″ | https://doi.org/10.1051/agro:2008002 |
87 | ″ | schema:sdDatePublished | 2022-06-01T22:06 |
88 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
89 | ″ | schema:sdPublisher | Ned410deefdcc44d3a60f6d199e804969 |
90 | ″ | schema:url | https://doi.org/10.1051/agro:2008002 |
91 | ″ | sgo:license | sg:explorer/license/ |
92 | ″ | sgo:sdDataset | articles |
93 | ″ | rdf:type | schema:ScholarlyArticle |
94 | N5a001b4cc7a04e329bd7106c7ee56789 | schema:name | dimensions_id |
95 | ″ | schema:value | pub.1034398210 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | N6d77d85b626e47868cd5b09bbfe734d0 | schema:name | doi |
98 | ″ | schema:value | 10.1051/agro:2008002 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | N7a6d5ab8ac7b4e2f88aa4e555d6719e3 | schema:issueNumber | 2 |
101 | ″ | rdf:type | schema:PublicationIssue |
102 | N87feeadf2e8d4f2daf521e085763ffad | rdf:first | sg:person.0761041307.61 |
103 | ″ | rdf:rest | rdf:nil |
104 | N8931eebc667949d9a6e427b09ed8287b | schema:volumeNumber | 28 |
105 | ″ | rdf:type | schema:PublicationVolume |
106 | N9298b87834ee4352872d6f5ea559a6ce | rdf:first | sg:person.0762616151.32 |
107 | ″ | rdf:rest | Nab2566dfa92c48cc93f696d62047fbbe |
108 | N949307ea7285496db61283512918c761 | rdf:first | sg:person.0635773426.46 |
109 | ″ | rdf:rest | N9e74ec69fa8745bf89a538030365f6f3 |
110 | N9e74ec69fa8745bf89a538030365f6f3 | rdf:first | sg:person.013424461643.57 |
111 | ″ | rdf:rest | N9298b87834ee4352872d6f5ea559a6ce |
112 | Na328bb744a924a7894bb6d8d82ddbbf4 | rdf:first | sg:person.011171633173.35 |
113 | ″ | rdf:rest | N949307ea7285496db61283512918c761 |
114 | Nab2566dfa92c48cc93f696d62047fbbe | rdf:first | sg:person.01137236547.78 |
115 | ″ | rdf:rest | N87feeadf2e8d4f2daf521e085763ffad |
116 | Nd1e6af4e669d485bb7df393191164a5b | rdf:first | sg:person.0576477507.80 |
117 | ″ | rdf:rest | Na328bb744a924a7894bb6d8d82ddbbf4 |
118 | Ned410deefdcc44d3a60f6d199e804969 | schema:name | Springer Nature - SN SciGraph project |
119 | ″ | rdf:type | schema:Organization |
120 | Nfc91a83dd53b4ad5a664cd319203c20e | rdf:first | sg:person.01020335226.77 |
121 | ″ | rdf:rest | Nd1e6af4e669d485bb7df393191164a5b |
122 | anzsrc-for:05 | schema:inDefinedTermSet | anzsrc-for: |
123 | ″ | schema:name | Environmental Sciences |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | anzsrc-for:0503 | schema:inDefinedTermSet | anzsrc-for: |
126 | ″ | schema:name | Soil Sciences |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | sg:journal.1135950 | schema:issn | 1297-9643 |
129 | ″ | ″ | 1774-0746 |
130 | ″ | schema:name | Agronomy for Sustainable Development |
131 | ″ | schema:publisher | Springer Nature |
132 | ″ | rdf:type | schema:Periodical |
133 | sg:person.01020335226.77 | schema:affiliation | grid-institutes:grid.512574.0 |
134 | ″ | schema:familyName | Montes-Molina |
135 | ″ | schema:givenName | J. A. |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020335226.77 |
137 | ″ | rdf:type | schema:Person |
138 | sg:person.011171633173.35 | schema:affiliation | grid-institutes:grid.512574.0 |
139 | ″ | schema:familyName | Ceballos-Ramirez |
140 | ″ | schema:givenName | J. M. |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171633173.35 |
142 | ″ | rdf:type | schema:Person |
143 | sg:person.01137236547.78 | schema:affiliation | grid-institutes:grid.512574.0 |
144 | ″ | schema:familyName | Dendooven |
145 | ″ | schema:givenName | L. |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137236547.78 |
147 | ″ | rdf:type | schema:Person |
148 | sg:person.013424461643.57 | schema:affiliation | grid-institutes:grid.473273.6 |
149 | ″ | schema:familyName | Espinoza-Paz |
150 | ″ | schema:givenName | N. |
151 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013424461643.57 |
152 | ″ | rdf:type | schema:Person |
153 | sg:person.0576477507.80 | schema:affiliation | grid-institutes:grid.512574.0 |
154 | ″ | schema:familyName | Luna-Guido |
155 | ″ | schema:givenName | M. |
156 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576477507.80 |
157 | ″ | rdf:type | schema:Person |
158 | sg:person.0635773426.46 | schema:affiliation | grid-institutes:grid.512574.0 |
159 | ″ | schema:familyName | Fernández-Luqueño |
160 | ″ | schema:givenName | F. |
161 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635773426.46 |
162 | ″ | rdf:type | schema:Person |
163 | sg:person.0761041307.61 | schema:affiliation | grid-institutes:grid.466853.a |
164 | ″ | schema:familyName | Gutierrez-Miceli |
165 | ″ | schema:givenName | F. A. |
166 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761041307.61 |
167 | ″ | rdf:type | schema:Person |
168 | sg:person.0762616151.32 | schema:affiliation | grid-institutes:grid.466853.a |
169 | ″ | schema:familyName | Rincón-Rosales |
170 | ″ | schema:givenName | R. |
171 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762616151.32 |
172 | ″ | rdf:type | schema:Person |
173 | sg:pub.10.1007/bf00116342 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032118091 |
174 | ″ | ″ | https://doi.org/10.1007/bf00116342 |
175 | ″ | rdf:type | schema:CreativeWork |
176 | sg:pub.10.1007/bf02981863 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020442251 |
177 | ″ | ″ | https://doi.org/10.1007/bf02981863 |
178 | ″ | rdf:type | schema:CreativeWork |
179 | sg:pub.10.1007/s10646-006-0099-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003855523 |
180 | ″ | ″ | https://doi.org/10.1007/s10646-006-0099-8 |
181 | ″ | rdf:type | schema:CreativeWork |
182 | sg:pub.10.1023/a:1024146710611 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002247135 |
183 | ″ | ″ | https://doi.org/10.1023/a:1024146710611 |
184 | ″ | rdf:type | schema:CreativeWork |
185 | grid-institutes:grid.466853.a | schema:alternateName | Laboratory of Biotechnology, Instituto Tecnológico de Tuxtla-Gutiérrez, Tuxtla-Gutiérrez, Mexico |
186 | ″ | schema:name | Laboratory of Biotechnology, Instituto Tecnológico de Tuxtla-Gutiérrez, Tuxtla-Gutiérrez, Mexico |
187 | ″ | rdf:type | schema:Organization |
188 | grid-institutes:grid.473273.6 | schema:alternateName | Campo Experimental Centro de Chiapas (CECECH), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Ocozocoautla de Espinoza, Chiapas, Mexico |
189 | ″ | schema:name | Campo Experimental Centro de Chiapas (CECECH), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Ocozocoautla de Espinoza, Chiapas, Mexico |
190 | ″ | rdf:type | schema:Organization |
191 | grid-institutes:grid.512574.0 | schema:alternateName | Laboratory of Soil Ecology Dept. Biotechnology and Bioengineering, Cinvestav, Av. Instituto Politécnico Nacional 2508, C.P. 07360, Mexico D. F., Mexico |
192 | ″ | schema:name | Laboratory of Soil Ecology Dept. Biotechnology and Bioengineering, Cinvestav, Av. Instituto Politécnico Nacional 2508, C.P. 07360, Mexico D. F., Mexico |
193 | ″ | rdf:type | schema:Organization |