A multivariate approach to the problem of QTL localization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-03-01

AUTHORS

Caliński, Kaczmarek, Krajewski, Frova, Sari‐Gorla

ABSTRACT

QTL mapping with statistical likelihood-based procedures or asymptotically equivalent regression methods is usually carried out in a univariate way, even if many traits were observed in the experiment. Some proposals for multivariate QTL mapping by an extension of the maximum likelihood method for mixture models or by an application of the canonical transformation have been given in the literature. This paper describes a method of analysis of multitrait data sets, aimed at localization of QTLs contributing to many traits simultaneously, which is based on the linear model of multivariate multiple regression. A special form of the canonical analysis is employed to decompose the test statistic for the general no-QTL hypothesis into components pertaining to individual traits and individual, putative QTLs. Extended linear hypotheses are used to formulate conjectures concerning pleiotropy. A practical mapping algorithm is described. The theory is illustrated with the analysis of data from a study of maize drought resistance. More... »

PAGES

303-310

Identifiers

URI

http://scigraph.springernature.com/pub.10.1046/j.1365-2540.2000.00675.x

DOI

http://dx.doi.org/10.1046/j.1365-2540.2000.00675.x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019981137

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10866532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0603", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Evolutionary Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Linkage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait, Heritable", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombination, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zea mays", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical and Statistical Methods, Agricultural University, Wojska Polskiego 28, 60\u2010637 Pozna\u0144, Poland,", 
          "id": "http://www.grid.ac/institutes/grid.410688.3", 
          "name": [
            "Department of Mathematical and Statistical Methods, Agricultural University, Wojska Polskiego 28, 60\u2010637 Pozna\u0144, Poland,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cali\u0144ski", 
        "id": "sg:person.013240326637.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240326637.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Plant Genetics, Polish Academy of Sciences, Strzeszy\u0144ska 34, 60\u2010479 Pozna\u0144, Poland,", 
          "id": "http://www.grid.ac/institutes/grid.425086.d", 
          "name": [
            "Institute of Plant Genetics, Polish Academy of Sciences, Strzeszy\u0144ska 34, 60\u2010479 Pozna\u0144, Poland,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaczmarek", 
        "id": "sg:person.01125360425.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125360425.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Plant Genetics, Polish Academy of Sciences, Strzeszy\u0144ska 34, 60\u2010479 Pozna\u0144, Poland,", 
          "id": "http://www.grid.ac/institutes/grid.425086.d", 
          "name": [
            "Institute of Plant Genetics, Polish Academy of Sciences, Strzeszy\u0144ska 34, 60\u2010479 Pozna\u0144, Poland,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krajewski", 
        "id": "sg:person.0675067307.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675067307.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Milano, Via Celoria 26, 20133 Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Genetics and Microbiology, University of Milano, Via Celoria 26, 20133 Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frova", 
        "id": "sg:person.0772033504.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772033504.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Milano, Via Celoria 26, 20133 Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Genetics and Microbiology, University of Milano, Via Celoria 26, 20133 Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sari\u2010Gorla", 
        "id": "sg:person.0577233307.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577233307.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/hdy.1997.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025855051", 
          "https://doi.org/10.1038/hdy.1997.22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1365-2540.1998.00253.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007258409", 
          "https://doi.org/10.1046/j.1365-2540.1998.00253.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1992.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003515428", 
          "https://doi.org/10.1038/hdy.1992.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00224040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026430298", 
          "https://doi.org/10.1007/bf00224040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00226869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007078096", 
          "https://doi.org/10.1007/bf00226869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024752029", 
          "https://doi.org/10.1007/s001220051233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004451236", 
          "https://doi.org/10.1007/s001220051234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1994.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012151664", 
          "https://doi.org/10.1038/hdy.1994.120"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-03-01", 
    "datePublishedReg": "2000-03-01", 
    "description": "QTL mapping with statistical likelihood-based procedures or asymptotically equivalent regression methods is usually carried out in a univariate way, even if many traits were observed in the experiment. Some proposals for multivariate QTL mapping by an extension of the maximum likelihood method for mixture models or by an application of the canonical transformation have been given in the literature. This paper describes a method of analysis of multitrait data sets, aimed at localization of QTLs contributing to many traits simultaneously, which is based on the linear model of multivariate multiple regression. A special form of the canonical analysis is employed to decompose the test statistic for the general no-QTL hypothesis into components pertaining to individual traits and individual, putative QTLs. Extended linear hypotheses are used to formulate conjectures concerning pleiotropy. A practical mapping algorithm is described. The theory is illustrated with the analysis of data from a study of maize drought resistance.", 
    "genre": "article", 
    "id": "sg:pub.10.1046/j.1365-2540.2000.00675.x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017442", 
        "issn": [
          "0018-067X", 
          "1365-2540"
        ], 
        "name": "Heredity", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "keywords": [
      "likelihood-based procedure", 
      "canonical transformation", 
      "linear hypothesis", 
      "maximum likelihood method", 
      "test statistic", 
      "mixture model", 
      "likelihood method", 
      "linear model", 
      "special form", 
      "regression method", 
      "maize drought resistance", 
      "multivariate multiple regression", 
      "method of analysis", 
      "data sets", 
      "canonical analysis", 
      "conjecture", 
      "multivariate approach", 
      "model", 
      "theory", 
      "statistics", 
      "mapping algorithm", 
      "algorithm", 
      "univariate way", 
      "problem", 
      "analysis of data", 
      "extension", 
      "set", 
      "mapping", 
      "localization of QTLs", 
      "applications", 
      "approach", 
      "analysis", 
      "transformation", 
      "multiple regression", 
      "QTL localization", 
      "form", 
      "experiments", 
      "procedure", 
      "regression", 
      "way", 
      "proposal", 
      "localization", 
      "data", 
      "QTL mapping", 
      "literature", 
      "components", 
      "hypothesis", 
      "putative QTLs", 
      "pleiotropy", 
      "study", 
      "individual traits", 
      "resistance", 
      "traits", 
      "QTL", 
      "method", 
      "paper", 
      "drought resistance"
    ], 
    "name": "A multivariate approach to the problem of QTL localization", 
    "pagination": "303-310", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019981137"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1046/j.1365-2540.2000.00675.x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10866532"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1046/j.1365-2540.2000.00675.x", 
      "https://app.dimensions.ai/details/publication/pub.1019981137"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_337.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1046/j.1365-2540.2000.00675.x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1046/j.1365-2540.2000.00675.x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1046/j.1365-2540.2000.00675.x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1046/j.1365-2540.2000.00675.x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1046/j.1365-2540.2000.00675.x'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      22 PREDICATES      102 URIs      85 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1046/j.1365-2540.2000.00675.x schema:about N00458d676e5c490b9e5600be52672653
2 N17b141ea1965489ba9e5ca9a84fd4cac
3 N28c0d56bb8024087902d4ce4d04dffd4
4 N48d8cbd6b29f4bf5ba4d61bf365a8f4f
5 N8fbbe2c2a3c546619e72f8c363176e3d
6 N96917f1f338d481489d9f7683b10017c
7 Nc2e077dec1e047468819563e65983545
8 Nea9fdda0ff704647a64387d4100e7f7d
9 Nef2fe34bd36e4bfe80114d6b0c5f86c0
10 Nf9cf3cdadfd94867b9b39f6b3d6c1b48
11 anzsrc-for:06
12 anzsrc-for:0603
13 anzsrc-for:0604
14 schema:author Ncf3d86112c4846d99b234ca93a614d4a
15 schema:citation sg:pub.10.1007/bf00224040
16 sg:pub.10.1007/bf00226869
17 sg:pub.10.1007/s001220051233
18 sg:pub.10.1007/s001220051234
19 sg:pub.10.1038/hdy.1992.131
20 sg:pub.10.1038/hdy.1994.120
21 sg:pub.10.1038/hdy.1997.22
22 sg:pub.10.1046/j.1365-2540.1998.00253.x
23 schema:datePublished 2000-03-01
24 schema:datePublishedReg 2000-03-01
25 schema:description QTL mapping with statistical likelihood-based procedures or asymptotically equivalent regression methods is usually carried out in a univariate way, even if many traits were observed in the experiment. Some proposals for multivariate QTL mapping by an extension of the maximum likelihood method for mixture models or by an application of the canonical transformation have been given in the literature. This paper describes a method of analysis of multitrait data sets, aimed at localization of QTLs contributing to many traits simultaneously, which is based on the linear model of multivariate multiple regression. A special form of the canonical analysis is employed to decompose the test statistic for the general no-QTL hypothesis into components pertaining to individual traits and individual, putative QTLs. Extended linear hypotheses are used to formulate conjectures concerning pleiotropy. A practical mapping algorithm is described. The theory is illustrated with the analysis of data from a study of maize drought resistance.
26 schema:genre article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N09037abfebd34a6097a7ea31be4ca64f
30 N393b8596ed694592b37748a80c6f99c3
31 sg:journal.1017442
32 schema:keywords QTL
33 QTL localization
34 QTL mapping
35 algorithm
36 analysis
37 analysis of data
38 applications
39 approach
40 canonical analysis
41 canonical transformation
42 components
43 conjecture
44 data
45 data sets
46 drought resistance
47 experiments
48 extension
49 form
50 hypothesis
51 individual traits
52 likelihood method
53 likelihood-based procedure
54 linear hypothesis
55 linear model
56 literature
57 localization
58 localization of QTLs
59 maize drought resistance
60 mapping
61 mapping algorithm
62 maximum likelihood method
63 method
64 method of analysis
65 mixture model
66 model
67 multiple regression
68 multivariate approach
69 multivariate multiple regression
70 paper
71 pleiotropy
72 problem
73 procedure
74 proposal
75 putative QTLs
76 regression
77 regression method
78 resistance
79 set
80 special form
81 statistics
82 study
83 test statistic
84 theory
85 traits
86 transformation
87 univariate way
88 way
89 schema:name A multivariate approach to the problem of QTL localization
90 schema:pagination 303-310
91 schema:productId N0e98afbfc293401993b785fc5a0ac4ed
92 Nbac5505a1c174eb6b25b7180b031d229
93 Nbacf741dee764bbd84f4dbb9d6278c30
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019981137
95 https://doi.org/10.1046/j.1365-2540.2000.00675.x
96 schema:sdDatePublished 2022-06-01T22:02
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher N0db723cc3954450093084e0105f190a7
99 schema:url https://doi.org/10.1046/j.1365-2540.2000.00675.x
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N00458d676e5c490b9e5600be52672653 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Genes, Plant
105 rdf:type schema:DefinedTerm
106 N079bcc91b4c64e7ea3be27cd71edff6f rdf:first sg:person.0675067307.03
107 rdf:rest N65291eab58a8432096c89eb093c8e1a7
108 N09037abfebd34a6097a7ea31be4ca64f schema:volumeNumber 84
109 rdf:type schema:PublicationVolume
110 N0db723cc3954450093084e0105f190a7 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N0e98afbfc293401993b785fc5a0ac4ed schema:name doi
113 schema:value 10.1046/j.1365-2540.2000.00675.x
114 rdf:type schema:PropertyValue
115 N17b141ea1965489ba9e5ca9a84fd4cac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Genetic Linkage
117 rdf:type schema:DefinedTerm
118 N21d8eb1b48af4baba3c003bf81f07ad1 rdf:first sg:person.0577233307.74
119 rdf:rest rdf:nil
120 N2635285c390241dda8e29fb1896a108c rdf:first sg:person.01125360425.37
121 rdf:rest N079bcc91b4c64e7ea3be27cd71edff6f
122 N28c0d56bb8024087902d4ce4d04dffd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Phenotype
124 rdf:type schema:DefinedTerm
125 N393b8596ed694592b37748a80c6f99c3 schema:issueNumber 3
126 rdf:type schema:PublicationIssue
127 N48d8cbd6b29f4bf5ba4d61bf365a8f4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Multivariate Analysis
129 rdf:type schema:DefinedTerm
130 N65291eab58a8432096c89eb093c8e1a7 rdf:first sg:person.0772033504.06
131 rdf:rest N21d8eb1b48af4baba3c003bf81f07ad1
132 N8fbbe2c2a3c546619e72f8c363176e3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Recombination, Genetic
134 rdf:type schema:DefinedTerm
135 N96917f1f338d481489d9f7683b10017c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Zea mays
137 rdf:type schema:DefinedTerm
138 Nbac5505a1c174eb6b25b7180b031d229 schema:name pubmed_id
139 schema:value 10866532
140 rdf:type schema:PropertyValue
141 Nbacf741dee764bbd84f4dbb9d6278c30 schema:name dimensions_id
142 schema:value pub.1019981137
143 rdf:type schema:PropertyValue
144 Nc2e077dec1e047468819563e65983545 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Models, Statistical
146 rdf:type schema:DefinedTerm
147 Ncf3d86112c4846d99b234ca93a614d4a rdf:first sg:person.013240326637.98
148 rdf:rest N2635285c390241dda8e29fb1896a108c
149 Nea9fdda0ff704647a64387d4100e7f7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Models, Genetic
151 rdf:type schema:DefinedTerm
152 Nef2fe34bd36e4bfe80114d6b0c5f86c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Quantitative Trait, Heritable
154 rdf:type schema:DefinedTerm
155 Nf9cf3cdadfd94867b9b39f6b3d6c1b48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Genetic Markers
157 rdf:type schema:DefinedTerm
158 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
159 schema:name Biological Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0603 schema:inDefinedTermSet anzsrc-for:
162 schema:name Evolutionary Biology
163 rdf:type schema:DefinedTerm
164 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
165 schema:name Genetics
166 rdf:type schema:DefinedTerm
167 sg:journal.1017442 schema:issn 0018-067X
168 1365-2540
169 schema:name Heredity
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.01125360425.37 schema:affiliation grid-institutes:grid.425086.d
173 schema:familyName Kaczmarek
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125360425.37
175 rdf:type schema:Person
176 sg:person.013240326637.98 schema:affiliation grid-institutes:grid.410688.3
177 schema:familyName Caliński
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240326637.98
179 rdf:type schema:Person
180 sg:person.0577233307.74 schema:affiliation grid-institutes:grid.4708.b
181 schema:familyName Sari‐Gorla
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577233307.74
183 rdf:type schema:Person
184 sg:person.0675067307.03 schema:affiliation grid-institutes:grid.425086.d
185 schema:familyName Krajewski
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675067307.03
187 rdf:type schema:Person
188 sg:person.0772033504.06 schema:affiliation grid-institutes:grid.4708.b
189 schema:familyName Frova
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772033504.06
191 rdf:type schema:Person
192 sg:pub.10.1007/bf00224040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026430298
193 https://doi.org/10.1007/bf00224040
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/bf00226869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007078096
196 https://doi.org/10.1007/bf00226869
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s001220051233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024752029
199 https://doi.org/10.1007/s001220051233
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s001220051234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004451236
202 https://doi.org/10.1007/s001220051234
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/hdy.1992.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003515428
205 https://doi.org/10.1038/hdy.1992.131
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/hdy.1994.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012151664
208 https://doi.org/10.1038/hdy.1994.120
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/hdy.1997.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025855051
211 https://doi.org/10.1038/hdy.1997.22
212 rdf:type schema:CreativeWork
213 sg:pub.10.1046/j.1365-2540.1998.00253.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007258409
214 https://doi.org/10.1046/j.1365-2540.1998.00253.x
215 rdf:type schema:CreativeWork
216 grid-institutes:grid.410688.3 schema:alternateName Department of Mathematical and Statistical Methods, Agricultural University, Wojska Polskiego 28, 60‐637 Poznań, Poland,
217 schema:name Department of Mathematical and Statistical Methods, Agricultural University, Wojska Polskiego 28, 60‐637 Poznań, Poland,
218 rdf:type schema:Organization
219 grid-institutes:grid.425086.d schema:alternateName Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60‐479 Poznań, Poland,
220 schema:name Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60‐479 Poznań, Poland,
221 rdf:type schema:Organization
222 grid-institutes:grid.4708.b schema:alternateName Department of Genetics and Microbiology, University of Milano, Via Celoria 26, 20133 Milan, Italy
223 schema:name Department of Genetics and Microbiology, University of Milano, Via Celoria 26, 20133 Milan, Italy
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...