Bootstrap variance of diversity and differentiation estimators in a subdivided population View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1998-01

AUTHORS

R J Petit, O Pons

ABSTRACT

We have recently proposed new estimators of the parameters of genetic diversity and differentiation and of their variances for a haploid locus in a population subdivided into a large number of subpopulations, with a two-stage sampling of populations and individuals. Here they are compared with bootstrap estimators. Several resampling methods are evaluated: sampling of populations only, individuals within populations only, or both. Theoretical results and a numerical example show that the most appropriate bootstrap variance estimators are obtained by resampling the populations alone and not both populations and individuals. However, some bias is apparent in the bootstrap methods, and the direct estimators proposed previously should therefore be preferred. More... »

PAGES

6882820

Journal

TITLE

Heredity

ISSUE

1

VOLUME

80

Identifiers

URI

http://scigraph.springernature.com/pub.10.1046/j.1365-2540.1998.00282.x

DOI

http://dx.doi.org/10.1046/j.1365-2540.1998.00282.x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021428189


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut National de la Recherche Agronomique, Laboratoire de G\u00e9n\u00e9tique et Am\u00e9lioration des Arbres Forestiers, B.P.45, F-33611 Gazinet cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petit", 
        "givenName": "R J", 
        "id": "sg:person.01202303446.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202303446.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut National de la Recherche Agronomique, Laboratoire de Biom\u00e9trie, F-78352 Jouy-en-Josas cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pons", 
        "givenName": "O", 
        "id": "sg:person.014426657133.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014426657133.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00223755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004983713", 
          "https://doi.org/10.1007/bf00223755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00220868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006375477", 
          "https://doi.org/10.1007/bf00220868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1949.tb02451.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025534180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.es.23.110192.002201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029840601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00221991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036887193", 
          "https://doi.org/10.1007/bf00221991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-2383-3_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040516754", 
          "https://doi.org/10.1007/978-1-4615-2383-3_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-2383-3_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040516754", 
          "https://doi.org/10.1007/978-1-4615-2383-3_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.70.12.3321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042233071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1995.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046976733", 
          "https://doi.org/10.1038/hdy.1995.62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1995.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046976733", 
          "https://doi.org/10.1038/hdy.1995.62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1995.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048776889", 
          "https://doi.org/10.1038/hdy.1995.167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1995.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048776889", 
          "https://doi.org/10.1038/hdy.1995.167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016756800020720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053765883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1988.10478591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1992.10475277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2408641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069917637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076962438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077181267", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082839595", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082996684", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1986.tb00516.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085715072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1990.tb05208.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085717914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1984.tb05657.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085737796"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-01", 
    "datePublishedReg": "1998-01-01", 
    "description": "We have recently proposed new estimators of the parameters of genetic diversity and differentiation and of their variances for a haploid locus in a population subdivided into a large number of subpopulations, with a two-stage sampling of populations and individuals. Here they are compared with bootstrap estimators. Several resampling methods are evaluated: sampling of populations only, individuals within populations only, or both. Theoretical results and a numerical example show that the most appropriate bootstrap variance estimators are obtained by resampling the populations alone and not both populations and individuals. However, some bias is apparent in the bootstrap methods, and the direct estimators proposed previously should therefore be preferred.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1046/j.1365-2540.1998.00282.x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017442", 
        "issn": [
          "0018-067X", 
          "1365-2540"
        ], 
        "name": "Heredity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "80"
      }
    ], 
    "name": "Bootstrap variance of diversity and differentiation estimators in a subdivided population", 
    "pagination": "6882820", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6617e253c655226cacc56a9e79134a22a3cc703a519c895759ad13704de9fd86"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1046/j.1365-2540.1998.00282.x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021428189"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1046/j.1365-2540.1998.00282.x", 
      "https://app.dimensions.ai/details/publication/pub.1021428189"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000585.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/6882820"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1046/j.1365-2540.1998.00282.x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1046/j.1365-2540.1998.00282.x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1046/j.1365-2540.1998.00282.x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1046/j.1365-2540.1998.00282.x'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1046/j.1365-2540.1998.00282.x schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N6392e03bc2004074a06ec6eff0626c2d
4 schema:citation sg:pub.10.1007/978-1-4615-2383-3_8
5 sg:pub.10.1007/bf00220868
6 sg:pub.10.1007/bf00221991
7 sg:pub.10.1007/bf00223755
8 sg:pub.10.1038/hdy.1995.167
9 sg:pub.10.1038/hdy.1995.62
10 https://app.dimensions.ai/details/publication/pub.1077181267
11 https://app.dimensions.ai/details/publication/pub.1082839595
12 https://app.dimensions.ai/details/publication/pub.1082996684
13 https://doi.org/10.1017/s0016756800020720
14 https://doi.org/10.1073/pnas.70.12.3321
15 https://doi.org/10.1080/01621459.1988.10478591
16 https://doi.org/10.1080/01621459.1992.10475277
17 https://doi.org/10.1093/oxfordjournals.molbev.a040703
18 https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
19 https://doi.org/10.1111/j.1558-5646.1984.tb05657.x
20 https://doi.org/10.1111/j.1558-5646.1986.tb00516.x
21 https://doi.org/10.1111/j.1558-5646.1990.tb05208.x
22 https://doi.org/10.1146/annurev.es.23.110192.002201
23 https://doi.org/10.2307/2408641
24 schema:datePublished 1998-01
25 schema:datePublishedReg 1998-01-01
26 schema:description We have recently proposed new estimators of the parameters of genetic diversity and differentiation and of their variances for a haploid locus in a population subdivided into a large number of subpopulations, with a two-stage sampling of populations and individuals. Here they are compared with bootstrap estimators. Several resampling methods are evaluated: sampling of populations only, individuals within populations only, or both. Theoretical results and a numerical example show that the most appropriate bootstrap variance estimators are obtained by resampling the populations alone and not both populations and individuals. However, some bias is apparent in the bootstrap methods, and the direct estimators proposed previously should therefore be preferred.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf Nbe1aaaa04d64463993e717bb2a06ce23
31 Nc3081e2100cf4ab2a32b4111413190a9
32 sg:journal.1017442
33 schema:name Bootstrap variance of diversity and differentiation estimators in a subdivided population
34 schema:pagination 6882820
35 schema:productId N5cc65b32eb0a48f09865c3fe2dd56594
36 N803de5af8ef54c4c8ca3e6890297dfb3
37 Nc98518df3e724f3a8d8b7f7296d105ed
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021428189
39 https://doi.org/10.1046/j.1365-2540.1998.00282.x
40 schema:sdDatePublished 2019-04-11T01:19
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nb083fb2c5a1b47b4b0b312ad4bbfcbf6
43 schema:url http://www.nature.com/articles/6882820
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N04595d0b6d7347cc9b175af8c8343c1f schema:name Institut National de la Recherche Agronomique, Laboratoire de Génétique et Amélioration des Arbres Forestiers, B.P.45, F-33611 Gazinet cedex, France
48 rdf:type schema:Organization
49 N5cc65b32eb0a48f09865c3fe2dd56594 schema:name doi
50 schema:value 10.1046/j.1365-2540.1998.00282.x
51 rdf:type schema:PropertyValue
52 N6392e03bc2004074a06ec6eff0626c2d rdf:first sg:person.01202303446.14
53 rdf:rest Nc012c4777ff741d6b66774782a7b1289
54 N803de5af8ef54c4c8ca3e6890297dfb3 schema:name readcube_id
55 schema:value 6617e253c655226cacc56a9e79134a22a3cc703a519c895759ad13704de9fd86
56 rdf:type schema:PropertyValue
57 N80e50029759749b8a3ecffce17c72535 schema:name Institut National de la Recherche Agronomique, Laboratoire de Biométrie, F-78352 Jouy-en-Josas cedex, France
58 rdf:type schema:Organization
59 Nb083fb2c5a1b47b4b0b312ad4bbfcbf6 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nbe1aaaa04d64463993e717bb2a06ce23 schema:volumeNumber 80
62 rdf:type schema:PublicationVolume
63 Nc012c4777ff741d6b66774782a7b1289 rdf:first sg:person.014426657133.08
64 rdf:rest rdf:nil
65 Nc3081e2100cf4ab2a32b4111413190a9 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 Nc98518df3e724f3a8d8b7f7296d105ed schema:name dimensions_id
68 schema:value pub.1021428189
69 rdf:type schema:PropertyValue
70 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
71 schema:name Biological Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
74 schema:name Genetics
75 rdf:type schema:DefinedTerm
76 sg:journal.1017442 schema:issn 0018-067X
77 1365-2540
78 schema:name Heredity
79 rdf:type schema:Periodical
80 sg:person.01202303446.14 schema:affiliation N04595d0b6d7347cc9b175af8c8343c1f
81 schema:familyName Petit
82 schema:givenName R J
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202303446.14
84 rdf:type schema:Person
85 sg:person.014426657133.08 schema:affiliation N80e50029759749b8a3ecffce17c72535
86 schema:familyName Pons
87 schema:givenName O
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014426657133.08
89 rdf:type schema:Person
90 sg:pub.10.1007/978-1-4615-2383-3_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040516754
91 https://doi.org/10.1007/978-1-4615-2383-3_8
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf00220868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006375477
94 https://doi.org/10.1007/bf00220868
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf00221991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036887193
97 https://doi.org/10.1007/bf00221991
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf00223755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004983713
100 https://doi.org/10.1007/bf00223755
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/hdy.1995.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048776889
103 https://doi.org/10.1038/hdy.1995.167
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/hdy.1995.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046976733
106 https://doi.org/10.1038/hdy.1995.62
107 rdf:type schema:CreativeWork
108 https://app.dimensions.ai/details/publication/pub.1077181267 schema:CreativeWork
109 https://app.dimensions.ai/details/publication/pub.1082839595 schema:CreativeWork
110 https://app.dimensions.ai/details/publication/pub.1082996684 schema:CreativeWork
111 https://doi.org/10.1017/s0016756800020720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053765883
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1073/pnas.70.12.3321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042233071
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1080/01621459.1988.10478591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303568
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1080/01621459.1992.10475277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304306
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1093/oxfordjournals.molbev.a040703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076962438
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1111/j.1469-1809.1949.tb02451.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025534180
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1111/j.1558-5646.1984.tb05657.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085737796
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1558-5646.1986.tb00516.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085715072
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1111/j.1558-5646.1990.tb05208.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085717914
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1146/annurev.es.23.110192.002201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029840601
130 rdf:type schema:CreativeWork
131 https://doi.org/10.2307/2408641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069917637
132 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...