Bootstrap variance of diversity and differentiation estimators in a subdivided population View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1998-01

AUTHORS

R J Petit, O Pons

ABSTRACT

We have recently proposed new estimators of the parameters of genetic diversity and differentiation and of their variances for a haploid locus in a population subdivided into a large number of subpopulations, with a two-stage sampling of populations and individuals. Here they are compared with bootstrap estimators. Several resampling methods are evaluated: sampling of populations only, individuals within populations only, or both. Theoretical results and a numerical example show that the most appropriate bootstrap variance estimators are obtained by resampling the populations alone and not both populations and individuals. However, some bias is apparent in the bootstrap methods, and the direct estimators proposed previously should therefore be preferred. More... »

PAGES

6882820

Journal

TITLE

Heredity

ISSUE

1

VOLUME

80

Identifiers

URI

http://scigraph.springernature.com/pub.10.1046/j.1365-2540.1998.00282.x

DOI

http://dx.doi.org/10.1046/j.1365-2540.1998.00282.x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021428189


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut National de la Recherche Agronomique, Laboratoire de G\u00e9n\u00e9tique et Am\u00e9lioration des Arbres Forestiers, B.P.45, F-33611 Gazinet cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petit", 
        "givenName": "R J", 
        "id": "sg:person.01202303446.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202303446.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut National de la Recherche Agronomique, Laboratoire de Biom\u00e9trie, F-78352 Jouy-en-Josas cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pons", 
        "givenName": "O", 
        "id": "sg:person.014426657133.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014426657133.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00223755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004983713", 
          "https://doi.org/10.1007/bf00223755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00220868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006375477", 
          "https://doi.org/10.1007/bf00220868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1949.tb02451.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025534180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.es.23.110192.002201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029840601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00221991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036887193", 
          "https://doi.org/10.1007/bf00221991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-2383-3_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040516754", 
          "https://doi.org/10.1007/978-1-4615-2383-3_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-2383-3_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040516754", 
          "https://doi.org/10.1007/978-1-4615-2383-3_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.70.12.3321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042233071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1995.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046976733", 
          "https://doi.org/10.1038/hdy.1995.62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1995.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046976733", 
          "https://doi.org/10.1038/hdy.1995.62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1995.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048776889", 
          "https://doi.org/10.1038/hdy.1995.167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1995.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048776889", 
          "https://doi.org/10.1038/hdy.1995.167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016756800020720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053765883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1988.10478591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1992.10475277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2408641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069917637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076962438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077181267", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082839595", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082996684", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1986.tb00516.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085715072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1990.tb05208.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085717914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1984.tb05657.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085737796"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-01", 
    "datePublishedReg": "1998-01-01", 
    "description": "We have recently proposed new estimators of the parameters of genetic diversity and differentiation and of their variances for a haploid locus in a population subdivided into a large number of subpopulations, with a two-stage sampling of populations and individuals. Here they are compared with bootstrap estimators. Several resampling methods are evaluated: sampling of populations only, individuals within populations only, or both. Theoretical results and a numerical example show that the most appropriate bootstrap variance estimators are obtained by resampling the populations alone and not both populations and individuals. However, some bias is apparent in the bootstrap methods, and the direct estimators proposed previously should therefore be preferred.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1046/j.1365-2540.1998.00282.x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1017442", 
        "issn": [
          "0018-067X", 
          "1365-2540"
        ], 
        "name": "Heredity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "80"
      }
    ], 
    "name": "Bootstrap variance of diversity and differentiation estimators in a subdivided population", 
    "pagination": "6882820", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6617e253c655226cacc56a9e79134a22a3cc703a519c895759ad13704de9fd86"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1046/j.1365-2540.1998.00282.x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021428189"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1046/j.1365-2540.1998.00282.x", 
      "https://app.dimensions.ai/details/publication/pub.1021428189"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000585.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/6882820"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1046/j.1365-2540.1998.00282.x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1046/j.1365-2540.1998.00282.x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1046/j.1365-2540.1998.00282.x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1046/j.1365-2540.1998.00282.x'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1046/j.1365-2540.1998.00282.x schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nc92d3996ed6e451986e1692221bd6321
4 schema:citation sg:pub.10.1007/978-1-4615-2383-3_8
5 sg:pub.10.1007/bf00220868
6 sg:pub.10.1007/bf00221991
7 sg:pub.10.1007/bf00223755
8 sg:pub.10.1038/hdy.1995.167
9 sg:pub.10.1038/hdy.1995.62
10 https://app.dimensions.ai/details/publication/pub.1077181267
11 https://app.dimensions.ai/details/publication/pub.1082839595
12 https://app.dimensions.ai/details/publication/pub.1082996684
13 https://doi.org/10.1017/s0016756800020720
14 https://doi.org/10.1073/pnas.70.12.3321
15 https://doi.org/10.1080/01621459.1988.10478591
16 https://doi.org/10.1080/01621459.1992.10475277
17 https://doi.org/10.1093/oxfordjournals.molbev.a040703
18 https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
19 https://doi.org/10.1111/j.1558-5646.1984.tb05657.x
20 https://doi.org/10.1111/j.1558-5646.1986.tb00516.x
21 https://doi.org/10.1111/j.1558-5646.1990.tb05208.x
22 https://doi.org/10.1146/annurev.es.23.110192.002201
23 https://doi.org/10.2307/2408641
24 schema:datePublished 1998-01
25 schema:datePublishedReg 1998-01-01
26 schema:description We have recently proposed new estimators of the parameters of genetic diversity and differentiation and of their variances for a haploid locus in a population subdivided into a large number of subpopulations, with a two-stage sampling of populations and individuals. Here they are compared with bootstrap estimators. Several resampling methods are evaluated: sampling of populations only, individuals within populations only, or both. Theoretical results and a numerical example show that the most appropriate bootstrap variance estimators are obtained by resampling the populations alone and not both populations and individuals. However, some bias is apparent in the bootstrap methods, and the direct estimators proposed previously should therefore be preferred.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N261d7d2f98dc4fdbbbab2a3132184870
31 Nf1a31474ba4b4a339a03d87b0feb000f
32 sg:journal.1017442
33 schema:name Bootstrap variance of diversity and differentiation estimators in a subdivided population
34 schema:pagination 6882820
35 schema:productId N2c21d2bd1b834d80a1dca4c4f4511a87
36 N38019181544c45ebb1256834adb1342c
37 N5888496eca3145caa38a820abbbae21c
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021428189
39 https://doi.org/10.1046/j.1365-2540.1998.00282.x
40 schema:sdDatePublished 2019-04-11T01:19
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N2c4d0061c1b24694aa437a2423b5884a
43 schema:url http://www.nature.com/articles/6882820
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N261d7d2f98dc4fdbbbab2a3132184870 schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N2c21d2bd1b834d80a1dca4c4f4511a87 schema:name readcube_id
50 schema:value 6617e253c655226cacc56a9e79134a22a3cc703a519c895759ad13704de9fd86
51 rdf:type schema:PropertyValue
52 N2c4d0061c1b24694aa437a2423b5884a schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N38019181544c45ebb1256834adb1342c schema:name dimensions_id
55 schema:value pub.1021428189
56 rdf:type schema:PropertyValue
57 N5888496eca3145caa38a820abbbae21c schema:name doi
58 schema:value 10.1046/j.1365-2540.1998.00282.x
59 rdf:type schema:PropertyValue
60 N8c93d038c65a4a678848a770ebbc8d3e schema:name Institut National de la Recherche Agronomique, Laboratoire de Biométrie, F-78352 Jouy-en-Josas cedex, France
61 rdf:type schema:Organization
62 Nc92d3996ed6e451986e1692221bd6321 rdf:first sg:person.01202303446.14
63 rdf:rest Nfd1f7632100b4298abd1f91feadd546f
64 Nf1a31474ba4b4a339a03d87b0feb000f schema:volumeNumber 80
65 rdf:type schema:PublicationVolume
66 Nf9b08e9f5107471db3df22ce180b0141 schema:name Institut National de la Recherche Agronomique, Laboratoire de Génétique et Amélioration des Arbres Forestiers, B.P.45, F-33611 Gazinet cedex, France
67 rdf:type schema:Organization
68 Nfd1f7632100b4298abd1f91feadd546f rdf:first sg:person.014426657133.08
69 rdf:rest rdf:nil
70 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
71 schema:name Biological Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
74 schema:name Genetics
75 rdf:type schema:DefinedTerm
76 sg:journal.1017442 schema:issn 0018-067X
77 1365-2540
78 schema:name Heredity
79 rdf:type schema:Periodical
80 sg:person.01202303446.14 schema:affiliation Nf9b08e9f5107471db3df22ce180b0141
81 schema:familyName Petit
82 schema:givenName R J
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202303446.14
84 rdf:type schema:Person
85 sg:person.014426657133.08 schema:affiliation N8c93d038c65a4a678848a770ebbc8d3e
86 schema:familyName Pons
87 schema:givenName O
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014426657133.08
89 rdf:type schema:Person
90 sg:pub.10.1007/978-1-4615-2383-3_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040516754
91 https://doi.org/10.1007/978-1-4615-2383-3_8
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf00220868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006375477
94 https://doi.org/10.1007/bf00220868
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf00221991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036887193
97 https://doi.org/10.1007/bf00221991
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf00223755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004983713
100 https://doi.org/10.1007/bf00223755
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/hdy.1995.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048776889
103 https://doi.org/10.1038/hdy.1995.167
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/hdy.1995.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046976733
106 https://doi.org/10.1038/hdy.1995.62
107 rdf:type schema:CreativeWork
108 https://app.dimensions.ai/details/publication/pub.1077181267 schema:CreativeWork
109 https://app.dimensions.ai/details/publication/pub.1082839595 schema:CreativeWork
110 https://app.dimensions.ai/details/publication/pub.1082996684 schema:CreativeWork
111 https://doi.org/10.1017/s0016756800020720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053765883
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1073/pnas.70.12.3321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042233071
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1080/01621459.1988.10478591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303568
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1080/01621459.1992.10475277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304306
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1093/oxfordjournals.molbev.a040703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076962438
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1111/j.1469-1809.1949.tb02451.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025534180
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1111/j.1558-5646.1984.tb05657.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085737796
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1558-5646.1986.tb00516.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085715072
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1111/j.1558-5646.1990.tb05208.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085717914
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1146/annurev.es.23.110192.002201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029840601
130 rdf:type schema:CreativeWork
131 https://doi.org/10.2307/2408641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069917637
132 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...