Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones — what makes a good extraction pathway? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08-04

AUTHORS

G. Longatte, F. Rappaport, F.-A. Wollman, M. Guille-Collignon, F. Lemaître

ABSTRACT

Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called “open center ratio” which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters. More... »

PAGES

969-979

Identifiers

URI

http://scigraph.springernature.com/pub.10.1039/c6pp00076b

DOI

http://dx.doi.org/10.1039/c6pp00076b

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016541262

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27411477


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlamydomonas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electron Transport", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosystem II Protein Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quinones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrometry, Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thylakoids", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Chemistry, University of New South Wales, 2052, Sydney, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1005.4", 
          "name": [
            "D\u00e9partement de Chimie, PASTEUR, Ecole normale sup\u00e9rieure, PSL Research University, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005, Paris, France", 
            "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France", 
            "School of Chemistry, University of New South Wales, 2052, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Longatte", 
        "givenName": "G.", 
        "id": "sg:person.01345470265.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345470265.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de physiologie membranaire et mol\u00e9culaire du chloroplaste, CNRS, UPMC UMR 7141, I.B.PC., 13 rue Pierre et Marie Curie, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.450875.b", 
          "name": [
            "Laboratoire de physiologie membranaire et mol\u00e9culaire du chloroplaste, CNRS, UPMC UMR 7141, I.B.PC., 13 rue Pierre et Marie Curie, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaport", 
        "givenName": "F.", 
        "id": "sg:person.01103560265.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de physiologie membranaire et mol\u00e9culaire du chloroplaste, CNRS, UPMC UMR 7141, I.B.PC., 13 rue Pierre et Marie Curie, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.450875.b", 
          "name": [
            "Laboratoire de physiologie membranaire et mol\u00e9culaire du chloroplaste, CNRS, UPMC UMR 7141, I.B.PC., 13 rue Pierre et Marie Curie, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wollman", 
        "givenName": "F.-A.", 
        "id": "sg:person.0661464054.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661464054.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "D\u00e9partement de Chimie, PASTEUR, Ecole normale sup\u00e9rieure, PSL Research University, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005, Paris, France", 
            "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guille-Collignon", 
        "givenName": "M.", 
        "id": "sg:person.01020074602.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020074602.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "D\u00e9partement de Chimie, PASTEUR, Ecole normale sup\u00e9rieure, PSL Research University, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005, Paris, France", 
            "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lema\u00eetre", 
        "givenName": "F.", 
        "id": "sg:person.01064556315.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064556315.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00118302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029700529", 
          "https://doi.org/10.1007/bf00118302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025518907", 
          "https://doi.org/10.1038/nmat3890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004380000332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026152195", 
          "https://doi.org/10.1007/s004380000332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02185410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047482391", 
          "https://doi.org/10.1007/bf02185410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-009-9487-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004992227", 
          "https://doi.org/10.1007/s11120-009-9487-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00028788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029461511", 
          "https://doi.org/10.1007/bf00028788"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08-04", 
    "datePublishedReg": "2016-08-04", 
    "description": "Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called \u201copen center ratio\u201d which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters.", 
    "genre": "article", 
    "id": "sg:pub.10.1039/c6pp00076b", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1029729", 
        "issn": [
          "1474-905X", 
          "1474-9092"
        ], 
        "name": "Photochemical & Photobiological Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "exogenous quinones", 
      "photosynthetic electrons", 
      "fluorescence measurements", 
      "synthesis of carbohydrates", 
      "extraction mechanism", 
      "electron transfer", 
      "suitable experimental conditions", 
      "different quinones", 
      "chemical energy", 
      "overall yield", 
      "extraction pathways", 
      "quinone", 
      "zone diagram", 
      "oxygenic photosynthesis", 
      "redox state", 
      "carbon dioxide", 
      "electrons", 
      "photosynthetic organisms", 
      "exogenous mediators", 
      "experimental conditions", 
      "solar energy", 
      "electrode", 
      "present work", 
      "DCBQ", 
      "synthesis", 
      "photosynthetic algae", 
      "photoelectron", 
      "dioxide", 
      "center ratio", 
      "energy", 
      "extraction", 
      "water", 
      "yield", 
      "further insight", 
      "algae", 
      "transfer", 
      "measurements", 
      "Chlamydomonas reinhardtii", 
      "intact algae", 
      "electric current", 
      "mechanism", 
      "carbohydrates", 
      "capacity", 
      "photosynthesis", 
      "parameters", 
      "process", 
      "method", 
      "ratio", 
      "reinhardtii", 
      "mutants", 
      "work", 
      "state", 
      "conditions", 
      "diagram", 
      "insights", 
      "same kind", 
      "organisms", 
      "plants", 
      "means", 
      "current", 
      "ability", 
      "study", 
      "kind", 
      "pathway", 
      "order", 
      "analysis", 
      "methodology", 
      "numerical parameters", 
      "principal reason", 
      "mediators", 
      "function", 
      "regard", 
      "proxy", 
      "reasons", 
      "purpose", 
      "benefits"
    ], 
    "name": "Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones \u2014 what makes a good extraction pathway?", 
    "pagination": "969-979", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016541262"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1039/c6pp00076b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27411477"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1039/c6pp00076b", 
      "https://app.dimensions.ai/details/publication/pub.1016541262"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_716.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1039/c6pp00076b"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1039/c6pp00076b'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1039/c6pp00076b'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1039/c6pp00076b'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1039/c6pp00076b'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      22 PREDICATES      119 URIs      105 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1039/c6pp00076b schema:about N30fa3e845ea74cc68254fc3a258486c3
2 N629e627b2b5a401a816920690f671135
3 N8e3acf505a4944fa80cdc61cab7ab591
4 N9f8738bb296a42709ad89f4f4b307c51
5 Na1db076d383b4245b2b5284b5338a6bf
6 Na320355b48b04ed3a86ebae4fa7e7624
7 Naaf4a4e226ef4dddbdf493f3556a9687
8 Nba55ec3e209c4d5eaf8d74198d9a85b1
9 Nc89afe0286d14080959208dab445ba78
10 Nda8f402b46a346918aaeef616e4711b6
11 Nfaec6cdd177d45119a131563f984c604
12 anzsrc-for:06
13 anzsrc-for:0607
14 schema:author Nd71cc323c3c54aaa91800436b3ae9c5d
15 schema:citation sg:pub.10.1007/bf00028788
16 sg:pub.10.1007/bf00118302
17 sg:pub.10.1007/bf02185410
18 sg:pub.10.1007/s004380000332
19 sg:pub.10.1007/s11120-009-9487-2
20 sg:pub.10.1038/nmat3890
21 schema:datePublished 2016-08-04
22 schema:datePublishedReg 2016-08-04
23 schema:description Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called “open center ratio” which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N2a679fe0d4a448e99bf2fef0920baf10
28 N2b33c2d405af45a192025efdfb67b305
29 sg:journal.1029729
30 schema:keywords Chlamydomonas reinhardtii
31 DCBQ
32 ability
33 algae
34 analysis
35 benefits
36 capacity
37 carbohydrates
38 carbon dioxide
39 center ratio
40 chemical energy
41 conditions
42 current
43 diagram
44 different quinones
45 dioxide
46 electric current
47 electrode
48 electron transfer
49 electrons
50 energy
51 exogenous mediators
52 exogenous quinones
53 experimental conditions
54 extraction
55 extraction mechanism
56 extraction pathways
57 fluorescence measurements
58 function
59 further insight
60 insights
61 intact algae
62 kind
63 means
64 measurements
65 mechanism
66 mediators
67 method
68 methodology
69 mutants
70 numerical parameters
71 order
72 organisms
73 overall yield
74 oxygenic photosynthesis
75 parameters
76 pathway
77 photoelectron
78 photosynthesis
79 photosynthetic algae
80 photosynthetic electrons
81 photosynthetic organisms
82 plants
83 present work
84 principal reason
85 process
86 proxy
87 purpose
88 quinone
89 ratio
90 reasons
91 redox state
92 regard
93 reinhardtii
94 same kind
95 solar energy
96 state
97 study
98 suitable experimental conditions
99 synthesis
100 synthesis of carbohydrates
101 transfer
102 water
103 work
104 yield
105 zone diagram
106 schema:name Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones — what makes a good extraction pathway?
107 schema:pagination 969-979
108 schema:productId N2e536d286c614e17b18422a6ed12f8a0
109 N60d3caf1e9414a7380b266dfff70e4c7
110 N91d4d23e4a5d42148af7756331c0a24c
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016541262
112 https://doi.org/10.1039/c6pp00076b
113 schema:sdDatePublished 2022-05-10T10:17
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N93b6da5c1490428eab8385fc8eeef57a
116 schema:url https://doi.org/10.1039/c6pp00076b
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N1e97f3a0a75a4fc4a5f0649a4e0f0729 rdf:first sg:person.01064556315.45
121 rdf:rest rdf:nil
122 N24bc7f1cf863467586a9b53dad2a01c7 rdf:first sg:person.01103560265.56
123 rdf:rest Nd517c21d985c455d8f0eb49fd1ee5d1f
124 N2a679fe0d4a448e99bf2fef0920baf10 schema:volumeNumber 15
125 rdf:type schema:PublicationVolume
126 N2b33c2d405af45a192025efdfb67b305 schema:issueNumber 8
127 rdf:type schema:PublicationIssue
128 N2e536d286c614e17b18422a6ed12f8a0 schema:name pubmed_id
129 schema:value 27411477
130 rdf:type schema:PropertyValue
131 N30fa3e845ea74cc68254fc3a258486c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Chlamydomonas
133 rdf:type schema:DefinedTerm
134 N60d3caf1e9414a7380b266dfff70e4c7 schema:name dimensions_id
135 schema:value pub.1016541262
136 rdf:type schema:PropertyValue
137 N629e627b2b5a401a816920690f671135 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Light
139 rdf:type schema:DefinedTerm
140 N8e3acf505a4944fa80cdc61cab7ab591 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Spectrometry, Fluorescence
142 rdf:type schema:DefinedTerm
143 N8f73c1c4ecd24a4e8b962dac262347f2 rdf:first sg:person.01020074602.38
144 rdf:rest N1e97f3a0a75a4fc4a5f0649a4e0f0729
145 N91d4d23e4a5d42148af7756331c0a24c schema:name doi
146 schema:value 10.1039/c6pp00076b
147 rdf:type schema:PropertyValue
148 N93b6da5c1490428eab8385fc8eeef57a schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 N9f8738bb296a42709ad89f4f4b307c51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Kinetics
152 rdf:type schema:DefinedTerm
153 Na1db076d383b4245b2b5284b5338a6bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Thylakoids
155 rdf:type schema:DefinedTerm
156 Na320355b48b04ed3a86ebae4fa7e7624 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Photosynthesis
158 rdf:type schema:DefinedTerm
159 Naaf4a4e226ef4dddbdf493f3556a9687 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Quinones
161 rdf:type schema:DefinedTerm
162 Nba55ec3e209c4d5eaf8d74198d9a85b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Photosystem II Protein Complex
164 rdf:type schema:DefinedTerm
165 Nc89afe0286d14080959208dab445ba78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Electrons
167 rdf:type schema:DefinedTerm
168 Nd517c21d985c455d8f0eb49fd1ee5d1f rdf:first sg:person.0661464054.08
169 rdf:rest N8f73c1c4ecd24a4e8b962dac262347f2
170 Nd71cc323c3c54aaa91800436b3ae9c5d rdf:first sg:person.01345470265.16
171 rdf:rest N24bc7f1cf863467586a9b53dad2a01c7
172 Nda8f402b46a346918aaeef616e4711b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Electron Transport
174 rdf:type schema:DefinedTerm
175 Nfaec6cdd177d45119a131563f984c604 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Mutagenesis
177 rdf:type schema:DefinedTerm
178 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
179 schema:name Biological Sciences
180 rdf:type schema:DefinedTerm
181 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
182 schema:name Plant Biology
183 rdf:type schema:DefinedTerm
184 sg:journal.1029729 schema:issn 1474-905X
185 1474-9092
186 schema:name Photochemical & Photobiological Sciences
187 schema:publisher Springer Nature
188 rdf:type schema:Periodical
189 sg:person.01020074602.38 schema:affiliation grid-institutes:grid.462844.8
190 schema:familyName Guille-Collignon
191 schema:givenName M.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020074602.38
193 rdf:type schema:Person
194 sg:person.01064556315.45 schema:affiliation grid-institutes:grid.462844.8
195 schema:familyName Lemaître
196 schema:givenName F.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064556315.45
198 rdf:type schema:Person
199 sg:person.01103560265.56 schema:affiliation grid-institutes:grid.450875.b
200 schema:familyName Rappaport
201 schema:givenName F.
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56
203 rdf:type schema:Person
204 sg:person.01345470265.16 schema:affiliation grid-institutes:grid.1005.4
205 schema:familyName Longatte
206 schema:givenName G.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345470265.16
208 rdf:type schema:Person
209 sg:person.0661464054.08 schema:affiliation grid-institutes:grid.450875.b
210 schema:familyName Wollman
211 schema:givenName F.-A.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661464054.08
213 rdf:type schema:Person
214 sg:pub.10.1007/bf00028788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029461511
215 https://doi.org/10.1007/bf00028788
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/bf00118302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029700529
218 https://doi.org/10.1007/bf00118302
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/bf02185410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047482391
221 https://doi.org/10.1007/bf02185410
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s004380000332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026152195
224 https://doi.org/10.1007/s004380000332
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/s11120-009-9487-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004992227
227 https://doi.org/10.1007/s11120-009-9487-2
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nmat3890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025518907
230 https://doi.org/10.1038/nmat3890
231 rdf:type schema:CreativeWork
232 grid-institutes:grid.1005.4 schema:alternateName School of Chemistry, University of New South Wales, 2052, Sydney, NSW, Australia
233 schema:name Département de Chimie, PASTEUR, Ecole normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005, Paris, France
234 School of Chemistry, University of New South Wales, 2052, Sydney, NSW, Australia
235 Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France
236 rdf:type schema:Organization
237 grid-institutes:grid.450875.b schema:alternateName Laboratoire de physiologie membranaire et moléculaire du chloroplaste, CNRS, UPMC UMR 7141, I.B.PC., 13 rue Pierre et Marie Curie, 75005, Paris, France
238 schema:name Laboratoire de physiologie membranaire et moléculaire du chloroplaste, CNRS, UPMC UMR 7141, I.B.PC., 13 rue Pierre et Marie Curie, 75005, Paris, France
239 rdf:type schema:Organization
240 grid-institutes:grid.462844.8 schema:alternateName Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France
241 schema:name Département de Chimie, PASTEUR, Ecole normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005, Paris, France
242 Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...