Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones — what makes a good extraction pathway? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08-04

AUTHORS

G. Longatte, F. Rappaport, F.-A. Wollman, M. Guille-Collignon, F. Lemaître

ABSTRACT

Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called “open center ratio” which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters. More... »

PAGES

969-979

Identifiers

URI

http://scigraph.springernature.com/pub.10.1039/c6pp00076b

DOI

http://dx.doi.org/10.1039/c6pp00076b

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016541262

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27411477


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlamydomonas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electron Transport", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosystem II Protein Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quinones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrometry, Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thylakoids", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Chemistry, University of New South Wales, 2052, Sydney, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1005.4", 
          "name": [
            "D\u00e9partement de Chimie, PASTEUR, Ecole normale sup\u00e9rieure, PSL Research University, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005, Paris, France", 
            "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France", 
            "School of Chemistry, University of New South Wales, 2052, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Longatte", 
        "givenName": "G.", 
        "id": "sg:person.01345470265.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345470265.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de physiologie membranaire et mol\u00e9culaire du chloroplaste, CNRS, UPMC UMR 7141, I.B.PC., 13 rue Pierre et Marie Curie, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.450875.b", 
          "name": [
            "Laboratoire de physiologie membranaire et mol\u00e9culaire du chloroplaste, CNRS, UPMC UMR 7141, I.B.PC., 13 rue Pierre et Marie Curie, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaport", 
        "givenName": "F.", 
        "id": "sg:person.01103560265.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de physiologie membranaire et mol\u00e9culaire du chloroplaste, CNRS, UPMC UMR 7141, I.B.PC., 13 rue Pierre et Marie Curie, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.450875.b", 
          "name": [
            "Laboratoire de physiologie membranaire et mol\u00e9culaire du chloroplaste, CNRS, UPMC UMR 7141, I.B.PC., 13 rue Pierre et Marie Curie, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wollman", 
        "givenName": "F.-A.", 
        "id": "sg:person.0661464054.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661464054.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "D\u00e9partement de Chimie, PASTEUR, Ecole normale sup\u00e9rieure, PSL Research University, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005, Paris, France", 
            "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guille-Collignon", 
        "givenName": "M.", 
        "id": "sg:person.01020074602.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020074602.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "D\u00e9partement de Chimie, PASTEUR, Ecole normale sup\u00e9rieure, PSL Research University, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005, Paris, France", 
            "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lema\u00eetre", 
        "givenName": "F.", 
        "id": "sg:person.01064556315.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064556315.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02185410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047482391", 
          "https://doi.org/10.1007/bf02185410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025518907", 
          "https://doi.org/10.1038/nmat3890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00118302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029700529", 
          "https://doi.org/10.1007/bf00118302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004380000332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026152195", 
          "https://doi.org/10.1007/s004380000332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-009-9487-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004992227", 
          "https://doi.org/10.1007/s11120-009-9487-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00028788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029461511", 
          "https://doi.org/10.1007/bf00028788"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08-04", 
    "datePublishedReg": "2016-08-04", 
    "description": "Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called \u201copen center ratio\u201d which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters.", 
    "genre": "article", 
    "id": "sg:pub.10.1039/c6pp00076b", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1029729", 
        "issn": [
          "1474-905X", 
          "1474-9092"
        ], 
        "name": "Photochemical & Photobiological Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "photosynthetic electrons", 
      "photosynthetic organisms", 
      "oxygenic photosynthesis", 
      "photosynthetic algae", 
      "intact algae", 
      "exogenous quinones", 
      "Chlamydomonas reinhardtii", 
      "algae", 
      "synthesis of carbohydrates", 
      "redox state", 
      "fluorescence measurements", 
      "quinone", 
      "different quinones", 
      "center ratio", 
      "electrons", 
      "exogenous mediators", 
      "further insight", 
      "chemical energy", 
      "reinhardtii", 
      "photosynthesis", 
      "mutants", 
      "suitable experimental conditions", 
      "electric current", 
      "plants", 
      "organisms", 
      "mechanism", 
      "electron transfer", 
      "pathway", 
      "extraction mechanism", 
      "energy", 
      "extraction pathways", 
      "photoelectron", 
      "carbohydrates", 
      "measurements", 
      "overall yield", 
      "insights", 
      "carbon dioxide", 
      "experimental conditions", 
      "solar energy", 
      "mediators", 
      "function", 
      "present work", 
      "ability", 
      "zone diagram", 
      "synthesis", 
      "yield", 
      "current", 
      "numerical parameters", 
      "study", 
      "proxy", 
      "electrode", 
      "state", 
      "water", 
      "diagram", 
      "analysis", 
      "parameters", 
      "transfer", 
      "same kind", 
      "dioxide", 
      "process", 
      "extraction", 
      "capacity", 
      "conditions", 
      "ratio", 
      "order", 
      "principal reason", 
      "means", 
      "work", 
      "regard", 
      "method", 
      "kind", 
      "benefits", 
      "reasons", 
      "methodology", 
      "purpose", 
      "sustainable electric current", 
      "open center ratio", 
      "Photosystem II acceptor redox state", 
      "II acceptor redox state", 
      "acceptor redox state", 
      "good extraction pathway"
    ], 
    "name": "Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones \u2014 what makes a good extraction pathway?", 
    "pagination": "969-979", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016541262"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1039/c6pp00076b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27411477"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1039/c6pp00076b", 
      "https://app.dimensions.ai/details/publication/pub.1016541262"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_693.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1039/c6pp00076b"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1039/c6pp00076b'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1039/c6pp00076b'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1039/c6pp00076b'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1039/c6pp00076b'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      22 PREDICATES      124 URIs      110 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1039/c6pp00076b schema:about N270918f8d62a4511945ab3f50f1fdd90
2 N273306e3cf17428abebac526e77372bc
3 N44f432ffb54845d5ac05cccdcddbde01
4 N657b9279e9144ef89fc7b95fa2feff4e
5 N7853450184454442864bf93474b92efd
6 Na2ee425fdf81453987e56360691a5ff4
7 Na5f34a9198ba469d86b1180db5512a8c
8 Nb65f871a075d458f9617ab0f82ebf1cc
9 Nb83d6fa9e4c14370924a5be9f208e71f
10 Nc0025b66fd5c4d7dbec8e864bd3b0c20
11 Nd28f9ab2453245e78905c0afd98b80e3
12 anzsrc-for:06
13 anzsrc-for:0607
14 schema:author N9531055731b24f15826989e75ab0428d
15 schema:citation sg:pub.10.1007/bf00028788
16 sg:pub.10.1007/bf00118302
17 sg:pub.10.1007/bf02185410
18 sg:pub.10.1007/s004380000332
19 sg:pub.10.1007/s11120-009-9487-2
20 sg:pub.10.1038/nmat3890
21 schema:datePublished 2016-08-04
22 schema:datePublishedReg 2016-08-04
23 schema:description Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called “open center ratio” which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N5143816cf8b14d10ad6e19f45fc8b89e
28 Nfd51c6f630164e8fac938814bfa02880
29 sg:journal.1029729
30 schema:keywords Chlamydomonas reinhardtii
31 II acceptor redox state
32 Photosystem II acceptor redox state
33 ability
34 acceptor redox state
35 algae
36 analysis
37 benefits
38 capacity
39 carbohydrates
40 carbon dioxide
41 center ratio
42 chemical energy
43 conditions
44 current
45 diagram
46 different quinones
47 dioxide
48 electric current
49 electrode
50 electron transfer
51 electrons
52 energy
53 exogenous mediators
54 exogenous quinones
55 experimental conditions
56 extraction
57 extraction mechanism
58 extraction pathways
59 fluorescence measurements
60 function
61 further insight
62 good extraction pathway
63 insights
64 intact algae
65 kind
66 means
67 measurements
68 mechanism
69 mediators
70 method
71 methodology
72 mutants
73 numerical parameters
74 open center ratio
75 order
76 organisms
77 overall yield
78 oxygenic photosynthesis
79 parameters
80 pathway
81 photoelectron
82 photosynthesis
83 photosynthetic algae
84 photosynthetic electrons
85 photosynthetic organisms
86 plants
87 present work
88 principal reason
89 process
90 proxy
91 purpose
92 quinone
93 ratio
94 reasons
95 redox state
96 regard
97 reinhardtii
98 same kind
99 solar energy
100 state
101 study
102 suitable experimental conditions
103 sustainable electric current
104 synthesis
105 synthesis of carbohydrates
106 transfer
107 water
108 work
109 yield
110 zone diagram
111 schema:name Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones — what makes a good extraction pathway?
112 schema:pagination 969-979
113 schema:productId N572151b748fc48449e60ddc495cc4aea
114 N6d3443065e51421abf785e2bfca06424
115 Nb258467f15d6461f9d4308b6a083896f
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016541262
117 https://doi.org/10.1039/c6pp00076b
118 schema:sdDatePublished 2022-01-01T18:39
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher N1eb99e629ebc4c6d81a260dd422a308b
121 schema:url https://doi.org/10.1039/c6pp00076b
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N1da1e84a8c0e4b8385df2a274faa4490 rdf:first sg:person.0661464054.08
126 rdf:rest N6184b0be37104c90bab409497b1b436c
127 N1eb99e629ebc4c6d81a260dd422a308b schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N270918f8d62a4511945ab3f50f1fdd90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Photosynthesis
131 rdf:type schema:DefinedTerm
132 N273306e3cf17428abebac526e77372bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Electrons
134 rdf:type schema:DefinedTerm
135 N44f432ffb54845d5ac05cccdcddbde01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Photosystem II Protein Complex
137 rdf:type schema:DefinedTerm
138 N5143816cf8b14d10ad6e19f45fc8b89e schema:issueNumber 8
139 rdf:type schema:PublicationIssue
140 N572151b748fc48449e60ddc495cc4aea schema:name doi
141 schema:value 10.1039/c6pp00076b
142 rdf:type schema:PropertyValue
143 N6184b0be37104c90bab409497b1b436c rdf:first sg:person.01020074602.38
144 rdf:rest Na5fe56dd354c4d528570875032c0a72e
145 N657b9279e9144ef89fc7b95fa2feff4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Spectrometry, Fluorescence
147 rdf:type schema:DefinedTerm
148 N6d3443065e51421abf785e2bfca06424 schema:name pubmed_id
149 schema:value 27411477
150 rdf:type schema:PropertyValue
151 N7853450184454442864bf93474b92efd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Chlamydomonas
153 rdf:type schema:DefinedTerm
154 N9531055731b24f15826989e75ab0428d rdf:first sg:person.01345470265.16
155 rdf:rest Nd77fac78c951499f89fe519114780bb2
156 Na2ee425fdf81453987e56360691a5ff4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Thylakoids
158 rdf:type schema:DefinedTerm
159 Na5f34a9198ba469d86b1180db5512a8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Kinetics
161 rdf:type schema:DefinedTerm
162 Na5fe56dd354c4d528570875032c0a72e rdf:first sg:person.01064556315.45
163 rdf:rest rdf:nil
164 Nb258467f15d6461f9d4308b6a083896f schema:name dimensions_id
165 schema:value pub.1016541262
166 rdf:type schema:PropertyValue
167 Nb65f871a075d458f9617ab0f82ebf1cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Quinones
169 rdf:type schema:DefinedTerm
170 Nb83d6fa9e4c14370924a5be9f208e71f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Mutagenesis
172 rdf:type schema:DefinedTerm
173 Nc0025b66fd5c4d7dbec8e864bd3b0c20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Light
175 rdf:type schema:DefinedTerm
176 Nd28f9ab2453245e78905c0afd98b80e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Electron Transport
178 rdf:type schema:DefinedTerm
179 Nd77fac78c951499f89fe519114780bb2 rdf:first sg:person.01103560265.56
180 rdf:rest N1da1e84a8c0e4b8385df2a274faa4490
181 Nfd51c6f630164e8fac938814bfa02880 schema:volumeNumber 15
182 rdf:type schema:PublicationVolume
183 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
184 schema:name Biological Sciences
185 rdf:type schema:DefinedTerm
186 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
187 schema:name Plant Biology
188 rdf:type schema:DefinedTerm
189 sg:journal.1029729 schema:issn 1474-905X
190 1474-9092
191 schema:name Photochemical & Photobiological Sciences
192 schema:publisher Springer Nature
193 rdf:type schema:Periodical
194 sg:person.01020074602.38 schema:affiliation grid-institutes:grid.462844.8
195 schema:familyName Guille-Collignon
196 schema:givenName M.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020074602.38
198 rdf:type schema:Person
199 sg:person.01064556315.45 schema:affiliation grid-institutes:grid.462844.8
200 schema:familyName Lemaître
201 schema:givenName F.
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064556315.45
203 rdf:type schema:Person
204 sg:person.01103560265.56 schema:affiliation grid-institutes:grid.450875.b
205 schema:familyName Rappaport
206 schema:givenName F.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103560265.56
208 rdf:type schema:Person
209 sg:person.01345470265.16 schema:affiliation grid-institutes:grid.1005.4
210 schema:familyName Longatte
211 schema:givenName G.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345470265.16
213 rdf:type schema:Person
214 sg:person.0661464054.08 schema:affiliation grid-institutes:grid.450875.b
215 schema:familyName Wollman
216 schema:givenName F.-A.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661464054.08
218 rdf:type schema:Person
219 sg:pub.10.1007/bf00028788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029461511
220 https://doi.org/10.1007/bf00028788
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/bf00118302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029700529
223 https://doi.org/10.1007/bf00118302
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/bf02185410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047482391
226 https://doi.org/10.1007/bf02185410
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s004380000332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026152195
229 https://doi.org/10.1007/s004380000332
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s11120-009-9487-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004992227
232 https://doi.org/10.1007/s11120-009-9487-2
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/nmat3890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025518907
235 https://doi.org/10.1038/nmat3890
236 rdf:type schema:CreativeWork
237 grid-institutes:grid.1005.4 schema:alternateName School of Chemistry, University of New South Wales, 2052, Sydney, NSW, Australia
238 schema:name Département de Chimie, PASTEUR, Ecole normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005, Paris, France
239 School of Chemistry, University of New South Wales, 2052, Sydney, NSW, Australia
240 Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France
241 rdf:type schema:Organization
242 grid-institutes:grid.450875.b schema:alternateName Laboratoire de physiologie membranaire et moléculaire du chloroplaste, CNRS, UPMC UMR 7141, I.B.PC., 13 rue Pierre et Marie Curie, 75005, Paris, France
243 schema:name Laboratoire de physiologie membranaire et moléculaire du chloroplaste, CNRS, UPMC UMR 7141, I.B.PC., 13 rue Pierre et Marie Curie, 75005, Paris, France
244 rdf:type schema:Organization
245 grid-institutes:grid.462844.8 schema:alternateName Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France
246 schema:name Département de Chimie, PASTEUR, Ecole normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, 24, rue Lhomond, 75005, Paris, France
247 Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005, Paris, France
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...