Novel miRNA-mRNA interactions conserved in essential cancer pathways View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04-07

AUTHORS

Eduardo Andrés-León, Ildefonso Cases, Sergio Alonso, Ana M. Rojas

ABSTRACT

Cancer is a complex disease in which unrestrained cell proliferation results in tumour development. Extensive research into the molecular mechanisms underlying tumorigenesis has led to the characterization of oncogenes and tumour suppressors that are key elements in cancer growth and progression, as well as that of other important elements like microRNAs. These genes and miRNAs appear to be constitutively deregulated in cancer. To identify signatures of miRNA-mRNA interactions potentially conserved in essential cancer pathways, we have conducted an integrative analysis of transcriptomic data, also taking into account methylation and copy number alterations. We analysed 18,605 raw transcriptome samples from The Cancer Genome Atlas covering 15 of the most common types of human tumours. From this global transcriptome study, we recovered known cancer-associated miRNA-targets and importantly, we identified new potential targets from miRNA families, also analysing the phenotypic outcomes of these genes/mRNAs in terms of survival. Further analyses could lead to novel approaches in cancer therapy. More... »

PAGES

46101

References to SciGraph publications

  • 2014-12-15. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes in NATURE GENETICS
  • 2013-10-06. Analysis of microRNA-target interactions across diverse cancer types in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2011-04-28. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers in GENOME BIOLOGY
  • 2011-06-07. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival in BMC MEDICAL GENOMICS
  • 2015-06-23. Wanderer, an interactive viewer to explore DNA methylation and gene expression data in human cancer in EPIGENETICS & CHROMATIN
  • 2016-05-09. Targeting survivin as a potential new treatment for chondrosarcoma of bone in ONCOGENESIS
  • 2009-07-05. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity in NATURE
  • 2016-05-09. miRNA let-7b modulates macrophage polarization and enhances tumor-associated macrophages to promote angiogenesis and mobility in prostate cancer in SCIENTIFIC REPORTS
  • 2016-09-15. Study of apoptosis-related interactions in colorectal cancer in TUMOR BIOLOGY
  • 2005-04-25. Elevated expression of survivin-splice variants predicts a poor outcome for soft-tissue sarcomas patients in ONCOGENE
  • 2016-05-11. miARma-Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis in SCIENTIFIC REPORTS
  • 2013-06-23. Comprehensive molecular characterization of clear cell renal cell carcinoma in NATURE
  • 2014-11-18. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis in SCIENTIFIC REPORTS
  • 2013-06-10. CDC20 overexpression predicts a poor prognosis for patients with colorectal cancer in JOURNAL OF TRANSLATIONAL MEDICINE
  • 2013-10-08. Aurora kinase A (AURKA) expression in colorectal cancer liver metastasis is associated with poor prognosis in BRITISH JOURNAL OF CANCER
  • 2010-11-30. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis in BMC BIOINFORMATICS
  • 2002-06-07. Frequent expression of new cancer/testis gene D40/AF15q14 in lung cancers of smokers in BRITISH JOURNAL OF CANCER
  • 2014-05-22. Cdc20 and securin overexpression predict short-term breast cancer survival in BRITISH JOURNAL OF CANCER
  • 2012-11-27. Expression of aurora kinase A is associated with metastasis-free survival in node-negative breast cancer patients in BMC CANCER
  • 2013-08-22. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor in NATURE PROTOCOLS
  • 2015-01-28. Comprehensive genomic characterization of head and neck squamous cell carcinomas in NATURE
  • 2015-04-17. Pan-cancer stratification of solid human epithelial tumors and cancer cell lines reveals commonalities and tissue-specific features of the CpG island methylator phenotype in EPIGENETICS & CHROMATIN
  • 2008-07-30. Widespread changes in protein synthesis induced by microRNAs in NATURE
  • 2010-02-22. Got target?: computational methods for microRNA target prediction and their extension in EXPERIMENTAL & MOLECULAR MEDICINE
  • 2013-03-05. BRCA1 expression and improved survival in ovarian cancer patients treated with intraperitoneal cisplatin and paclitaxel: a Gynecologic Oncology Group Study in BRITISH JOURNAL OF CANCER
  • 2013-11-22. Prognostic significance of let-7b expression in breast cancer and correlation to its target gene of BSG expression in MEDICAL ONCOLOGY
  • 2010-08. Mammalian microRNAs predominantly act to decrease target mRNA levels in NATURE
  • 2015-01-22. Genome-wide mRNA and miRNA expression profiling reveal multiple regulatory networks in colorectal cancer in CELL DEATH & DISEASE
  • 2015-06-30. Pathway and network analysis of cancer genomes in NATURE METHODS
  • 2014-10-05. let-7b/g silencing activates AKT signaling to promote gastric carcinogenesis in JOURNAL OF TRANSLATIONAL MEDICINE
  • 2015-07-14. An integrative pan-cancer-wide analysis of epigenetic enzymes reveals universal patterns of epigenomic deregulation in cancer in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep46101

    DOI

    http://dx.doi.org/10.1038/srep46101

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084538173

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28387377


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proportional Hazards Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Messenger", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Statistics as Topic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Survival Analysis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Present address: Bioinformatics Unit, Instituto de Parasitolog\u00eda y Biomedicina \u201cL\u00f3pez Neyra\u201d, Consejo Superior de Investigaciones Cient\u00edficas (IPBLN-CSIC), Granada, Spain.", 
              "id": "http://www.grid.ac/institutes/grid.429021.c", 
              "name": [
                "Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville, HUVR/US/CSIC, 41013, Sevilla, Spain", 
                "Present address: Bioinformatics Unit, Instituto de Parasitolog\u00eda y Biomedicina \u201cL\u00f3pez Neyra\u201d, Consejo Superior de Investigaciones Cient\u00edficas (IPBLN-CSIC), Granada, Spain."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andr\u00e9s-Le\u00f3n", 
            "givenName": "Eduardo", 
            "id": "sg:person.01345025713.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345025713.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "REDgene Bioinformatics, Sevilla, Spain", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "REDgene Bioinformatics, Sevilla, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cases", 
            "givenName": "Ildefonso", 
            "id": "sg:person.01351607706.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351607706.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias I Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias I Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alonso", 
            "givenName": "Sergio", 
            "id": "sg:person.01240515061.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240515061.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville, HUVR/US/CSIC, 41013, Sevilla, Spain", 
              "id": "http://www.grid.ac/institutes/grid.414816.e", 
              "name": [
                "Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville, HUVR/US/CSIC, 41013, Sevilla, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rojas", 
            "givenName": "Ana M.", 
            "id": "sg:person.0645005363.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645005363.66"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12032-013-0773-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032649644", 
              "https://doi.org/10.1007/s12032-013-0773-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12967-014-0281-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051064973", 
              "https://doi.org/10.1186/s12967-014-0281-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2013.70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045541176", 
              "https://doi.org/10.1038/bjc.2013.70"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep25602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047060497", 
              "https://doi.org/10.1038/srep25602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3858/emm.2010.42.4.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007829870", 
              "https://doi.org/10.3858/emm.2010.42.4.032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007963177", 
              "https://doi.org/10.1038/nature08195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010743047", 
              "https://doi.org/10.1038/nsmb.2678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep25749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017478722", 
              "https://doi.org/10.1038/srep25749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050842404", 
              "https://doi.org/10.1038/nature12222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052675624", 
              "https://doi.org/10.1038/ng.3168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2014.252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032112701", 
              "https://doi.org/10.1038/bjc.2014.252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037060648", 
              "https://doi.org/10.1038/nmeth.3440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13277-016-5363-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027981930", 
              "https://doi.org/10.1007/s13277-016-5363-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009165330", 
              "https://doi.org/10.1038/nature09267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-4-r41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036416165", 
              "https://doi.org/10.1186/gb-2011-12-4-r41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1208702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005337030", 
              "https://doi.org/10.1038/sj.onc.1208702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1479-5876-11-142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035038249", 
              "https://doi.org/10.1186/1479-5876-11-142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045934545", 
              "https://doi.org/10.1038/nature14129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep07097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009408527", 
              "https://doi.org/10.1038/srep07097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021877727", 
              "https://doi.org/10.1038/nature07228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cddis.2014.556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004079715", 
              "https://doi.org/10.1038/cddis.2014.556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6600328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000232187", 
              "https://doi.org/10.1038/sj.bjc.6600328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025448148", 
              "https://doi.org/10.1186/1471-2105-11-587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13072-015-0014-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028954433", 
              "https://doi.org/10.1186/s13072-015-0014-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/oncsis.2016.33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023983148", 
              "https://doi.org/10.1038/oncsis.2016.33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13072-015-0007-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032122929", 
              "https://doi.org/10.1186/s13072-015-0007-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2013.608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002969612", 
              "https://doi.org/10.1038/bjc.2013.608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2013.099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033430059", 
              "https://doi.org/10.1038/nprot.2013.099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-12-562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035298106", 
              "https://doi.org/10.1186/1471-2407-12-562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1755-8794-4-49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016458110", 
              "https://doi.org/10.1186/1755-8794-4-49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0699-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013803757", 
              "https://doi.org/10.1186/s13059-015-0699-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-04-07", 
        "datePublishedReg": "2017-04-07", 
        "description": "Cancer is a complex disease in which unrestrained cell proliferation results in tumour development. Extensive research into the molecular mechanisms underlying tumorigenesis has led to the characterization of oncogenes and tumour suppressors that are key elements in cancer growth and progression, as well as that of other important elements like microRNAs. These genes and miRNAs appear to be constitutively deregulated in cancer. To identify signatures of miRNA-mRNA interactions potentially conserved in essential cancer pathways, we have conducted an integrative analysis of transcriptomic data, also taking into account methylation and copy number alterations. We analysed 18,605 raw transcriptome samples from The Cancer Genome Atlas covering 15 of the most common types of human tumours. From this global transcriptome study, we recovered known cancer-associated miRNA-targets and importantly, we identified new potential targets from miRNA families, also analysing the phenotypic outcomes of these genes/mRNAs in terms of survival. Further analyses could lead to novel approaches in cancer therapy.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/srep46101", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "miRNA-mRNA interactions", 
          "novel miRNA-mRNA interactions", 
          "cancer pathways", 
          "global transcriptome study", 
          "genes/mRNAs", 
          "characterization of oncogenes", 
          "miRNA families", 
          "copy number alterations", 
          "transcriptome studies", 
          "Cancer Genome Atlas", 
          "transcriptomic data", 
          "phenotypic outcomes", 
          "transcriptome samples", 
          "integrative analysis", 
          "molecular mechanisms", 
          "tumor suppressor", 
          "new potential targets", 
          "number alterations", 
          "Genome Atlas", 
          "complex diseases", 
          "cell proliferation results", 
          "tumor development", 
          "potential target", 
          "cancer growth", 
          "human tumors", 
          "proliferation results", 
          "pathway", 
          "cancer therapy", 
          "genes", 
          "miRNAs", 
          "methylation", 
          "Further analysis", 
          "suppressor", 
          "microRNAs", 
          "oncogene", 
          "tumorigenesis", 
          "mRNA", 
          "interaction", 
          "family", 
          "growth", 
          "target", 
          "atlas", 
          "cancer", 
          "alterations", 
          "mechanism", 
          "terms of survival", 
          "extensive research", 
          "progression", 
          "survival", 
          "characterization", 
          "signatures", 
          "analysis", 
          "elements", 
          "novel approach", 
          "common type", 
          "development", 
          "key elements", 
          "important element", 
          "disease", 
          "types", 
          "tumors", 
          "study", 
          "data", 
          "results", 
          "samples", 
          "approach", 
          "research", 
          "therapy", 
          "terms", 
          "outcomes"
        ], 
        "name": "Novel miRNA-mRNA interactions conserved in essential cancer pathways", 
        "pagination": "46101", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084538173"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep46101"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28387377"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep46101", 
          "https://app.dimensions.ai/details/publication/pub.1084538173"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_747.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/srep46101"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep46101'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep46101'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep46101'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep46101'


     

    This table displays all metadata directly associated to this object as RDF triples.

    341 TRIPLES      22 PREDICATES      141 URIs      99 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep46101 schema:about N070819960f3648e8bdade1528ea74662
    2 N274591b0546b4d5cbb802f06675a00d9
    3 N2a1da88d6573456e9e7853cbe7b0aa20
    4 N3e2b9288aa784ddd89e2a93da901f836
    5 N42d556dc3ee341f0aa246fa39bf9b3fc
    6 N4a12f6140c354844854b3999d4c187c1
    7 N5e2475206f0d4a3a9171ebbf368a8a8c
    8 N6f22e471f6264a6daeb95bd2ddfc50fd
    9 Nb5ffdefd72304f4ca2b0986367a8aa66
    10 Nc51ced56a0e3479abe13f390aa9f2524
    11 Ne5709346e7c04f5cb642a7c7634a95e8
    12 anzsrc-for:06
    13 anzsrc-for:0601
    14 anzsrc-for:0604
    15 anzsrc-for:11
    16 anzsrc-for:1112
    17 schema:author Nbfd3c3eb03e3487fb70683ee0aa723cd
    18 schema:citation sg:pub.10.1007/s12032-013-0773-7
    19 sg:pub.10.1007/s13277-016-5363-9
    20 sg:pub.10.1038/bjc.2013.608
    21 sg:pub.10.1038/bjc.2013.70
    22 sg:pub.10.1038/bjc.2014.252
    23 sg:pub.10.1038/cddis.2014.556
    24 sg:pub.10.1038/nature07228
    25 sg:pub.10.1038/nature08195
    26 sg:pub.10.1038/nature09267
    27 sg:pub.10.1038/nature12222
    28 sg:pub.10.1038/nature14129
    29 sg:pub.10.1038/ng.3168
    30 sg:pub.10.1038/nmeth.3440
    31 sg:pub.10.1038/nprot.2013.099
    32 sg:pub.10.1038/nsmb.2678
    33 sg:pub.10.1038/oncsis.2016.33
    34 sg:pub.10.1038/sj.bjc.6600328
    35 sg:pub.10.1038/sj.onc.1208702
    36 sg:pub.10.1038/srep07097
    37 sg:pub.10.1038/srep25602
    38 sg:pub.10.1038/srep25749
    39 sg:pub.10.1186/1471-2105-11-587
    40 sg:pub.10.1186/1471-2407-12-562
    41 sg:pub.10.1186/1479-5876-11-142
    42 sg:pub.10.1186/1755-8794-4-49
    43 sg:pub.10.1186/gb-2011-12-4-r41
    44 sg:pub.10.1186/s12967-014-0281-3
    45 sg:pub.10.1186/s13059-015-0699-9
    46 sg:pub.10.1186/s13072-015-0007-7
    47 sg:pub.10.1186/s13072-015-0014-8
    48 sg:pub.10.3858/emm.2010.42.4.032
    49 schema:datePublished 2017-04-07
    50 schema:datePublishedReg 2017-04-07
    51 schema:description Cancer is a complex disease in which unrestrained cell proliferation results in tumour development. Extensive research into the molecular mechanisms underlying tumorigenesis has led to the characterization of oncogenes and tumour suppressors that are key elements in cancer growth and progression, as well as that of other important elements like microRNAs. These genes and miRNAs appear to be constitutively deregulated in cancer. To identify signatures of miRNA-mRNA interactions potentially conserved in essential cancer pathways, we have conducted an integrative analysis of transcriptomic data, also taking into account methylation and copy number alterations. We analysed 18,605 raw transcriptome samples from The Cancer Genome Atlas covering 15 of the most common types of human tumours. From this global transcriptome study, we recovered known cancer-associated miRNA-targets and importantly, we identified new potential targets from miRNA families, also analysing the phenotypic outcomes of these genes/mRNAs in terms of survival. Further analyses could lead to novel approaches in cancer therapy.
    52 schema:genre article
    53 schema:inLanguage en
    54 schema:isAccessibleForFree true
    55 schema:isPartOf N0fa42b8c2d564cde95020966d473c63d
    56 Nc7f4809382364d69846f0f5b2e92fe60
    57 sg:journal.1045337
    58 schema:keywords Cancer Genome Atlas
    59 Further analysis
    60 Genome Atlas
    61 alterations
    62 analysis
    63 approach
    64 atlas
    65 cancer
    66 cancer growth
    67 cancer pathways
    68 cancer therapy
    69 cell proliferation results
    70 characterization
    71 characterization of oncogenes
    72 common type
    73 complex diseases
    74 copy number alterations
    75 data
    76 development
    77 disease
    78 elements
    79 extensive research
    80 family
    81 genes
    82 genes/mRNAs
    83 global transcriptome study
    84 growth
    85 human tumors
    86 important element
    87 integrative analysis
    88 interaction
    89 key elements
    90 mRNA
    91 mechanism
    92 methylation
    93 miRNA families
    94 miRNA-mRNA interactions
    95 miRNAs
    96 microRNAs
    97 molecular mechanisms
    98 new potential targets
    99 novel approach
    100 novel miRNA-mRNA interactions
    101 number alterations
    102 oncogene
    103 outcomes
    104 pathway
    105 phenotypic outcomes
    106 potential target
    107 progression
    108 proliferation results
    109 research
    110 results
    111 samples
    112 signatures
    113 study
    114 suppressor
    115 survival
    116 target
    117 terms
    118 terms of survival
    119 therapy
    120 transcriptome samples
    121 transcriptome studies
    122 transcriptomic data
    123 tumor development
    124 tumor suppressor
    125 tumorigenesis
    126 tumors
    127 types
    128 schema:name Novel miRNA-mRNA interactions conserved in essential cancer pathways
    129 schema:pagination 46101
    130 schema:productId N14b11a3f5ea148b99e1f825d3ac4adc6
    131 N2825e26e71cc4fe694b486386b8fc165
    132 Nb549ce7ef4dd4037b73cf7ae236866d2
    133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084538173
    134 https://doi.org/10.1038/srep46101
    135 schema:sdDatePublished 2022-05-20T07:33
    136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    137 schema:sdPublisher Nf9df49eb6fff4814987be11aaea369fc
    138 schema:url https://doi.org/10.1038/srep46101
    139 sgo:license sg:explorer/license/
    140 sgo:sdDataset articles
    141 rdf:type schema:ScholarlyArticle
    142 N070819960f3648e8bdade1528ea74662 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Proportional Hazards Models
    144 rdf:type schema:DefinedTerm
    145 N0fa42b8c2d564cde95020966d473c63d schema:volumeNumber 7
    146 rdf:type schema:PublicationVolume
    147 N14b11a3f5ea148b99e1f825d3ac4adc6 schema:name dimensions_id
    148 schema:value pub.1084538173
    149 rdf:type schema:PropertyValue
    150 N274591b0546b4d5cbb802f06675a00d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Statistics as Topic
    152 rdf:type schema:DefinedTerm
    153 N2825e26e71cc4fe694b486386b8fc165 schema:name doi
    154 schema:value 10.1038/srep46101
    155 rdf:type schema:PropertyValue
    156 N2a1da88d6573456e9e7853cbe7b0aa20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Genome, Human
    158 rdf:type schema:DefinedTerm
    159 N2e9b7026af884f1186d10a83a2254dfa rdf:first sg:person.0645005363.66
    160 rdf:rest rdf:nil
    161 N3e2b9288aa784ddd89e2a93da901f836 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Signal Transduction
    163 rdf:type schema:DefinedTerm
    164 N42d556dc3ee341f0aa246fa39bf9b3fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Gene Expression Profiling
    166 rdf:type schema:DefinedTerm
    167 N4a12f6140c354844854b3999d4c187c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name MicroRNAs
    169 rdf:type schema:DefinedTerm
    170 N5e2475206f0d4a3a9171ebbf368a8a8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Neoplasms
    172 rdf:type schema:DefinedTerm
    173 N663dc501695942b1aac74304bb0df3b8 rdf:first sg:person.01351607706.43
    174 rdf:rest Nd3250574dcf1428297357572dffab998
    175 N6f22e471f6264a6daeb95bd2ddfc50fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Gene Expression Regulation, Neoplastic
    177 rdf:type schema:DefinedTerm
    178 Nb549ce7ef4dd4037b73cf7ae236866d2 schema:name pubmed_id
    179 schema:value 28387377
    180 rdf:type schema:PropertyValue
    181 Nb5ffdefd72304f4ca2b0986367a8aa66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Humans
    183 rdf:type schema:DefinedTerm
    184 Nbfd3c3eb03e3487fb70683ee0aa723cd rdf:first sg:person.01345025713.05
    185 rdf:rest N663dc501695942b1aac74304bb0df3b8
    186 Nc51ced56a0e3479abe13f390aa9f2524 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Survival Analysis
    188 rdf:type schema:DefinedTerm
    189 Nc7f4809382364d69846f0f5b2e92fe60 schema:issueNumber 1
    190 rdf:type schema:PublicationIssue
    191 Nd3250574dcf1428297357572dffab998 rdf:first sg:person.01240515061.54
    192 rdf:rest N2e9b7026af884f1186d10a83a2254dfa
    193 Ne5709346e7c04f5cb642a7c7634a95e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name RNA, Messenger
    195 rdf:type schema:DefinedTerm
    196 Nf9df49eb6fff4814987be11aaea369fc schema:name Springer Nature - SN SciGraph project
    197 rdf:type schema:Organization
    198 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    199 schema:name Biological Sciences
    200 rdf:type schema:DefinedTerm
    201 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    202 schema:name Biochemistry and Cell Biology
    203 rdf:type schema:DefinedTerm
    204 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Genetics
    206 rdf:type schema:DefinedTerm
    207 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Medical and Health Sciences
    209 rdf:type schema:DefinedTerm
    210 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    211 schema:name Oncology and Carcinogenesis
    212 rdf:type schema:DefinedTerm
    213 sg:journal.1045337 schema:issn 2045-2322
    214 schema:name Scientific Reports
    215 schema:publisher Springer Nature
    216 rdf:type schema:Periodical
    217 sg:person.01240515061.54 schema:affiliation grid-institutes:None
    218 schema:familyName Alonso
    219 schema:givenName Sergio
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240515061.54
    221 rdf:type schema:Person
    222 sg:person.01345025713.05 schema:affiliation grid-institutes:grid.429021.c
    223 schema:familyName Andrés-León
    224 schema:givenName Eduardo
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345025713.05
    226 rdf:type schema:Person
    227 sg:person.01351607706.43 schema:affiliation grid-institutes:None
    228 schema:familyName Cases
    229 schema:givenName Ildefonso
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351607706.43
    231 rdf:type schema:Person
    232 sg:person.0645005363.66 schema:affiliation grid-institutes:grid.414816.e
    233 schema:familyName Rojas
    234 schema:givenName Ana M.
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645005363.66
    236 rdf:type schema:Person
    237 sg:pub.10.1007/s12032-013-0773-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032649644
    238 https://doi.org/10.1007/s12032-013-0773-7
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s13277-016-5363-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027981930
    241 https://doi.org/10.1007/s13277-016-5363-9
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/bjc.2013.608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002969612
    244 https://doi.org/10.1038/bjc.2013.608
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/bjc.2013.70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045541176
    247 https://doi.org/10.1038/bjc.2013.70
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/bjc.2014.252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032112701
    250 https://doi.org/10.1038/bjc.2014.252
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/cddis.2014.556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004079715
    253 https://doi.org/10.1038/cddis.2014.556
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/nature07228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021877727
    256 https://doi.org/10.1038/nature07228
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nature08195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007963177
    259 https://doi.org/10.1038/nature08195
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nature09267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009165330
    262 https://doi.org/10.1038/nature09267
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nature12222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050842404
    265 https://doi.org/10.1038/nature12222
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/nature14129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045934545
    268 https://doi.org/10.1038/nature14129
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/ng.3168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052675624
    271 https://doi.org/10.1038/ng.3168
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/nmeth.3440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037060648
    274 https://doi.org/10.1038/nmeth.3440
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/nprot.2013.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033430059
    277 https://doi.org/10.1038/nprot.2013.099
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/nsmb.2678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010743047
    280 https://doi.org/10.1038/nsmb.2678
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/oncsis.2016.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023983148
    283 https://doi.org/10.1038/oncsis.2016.33
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/sj.bjc.6600328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000232187
    286 https://doi.org/10.1038/sj.bjc.6600328
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/sj.onc.1208702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005337030
    289 https://doi.org/10.1038/sj.onc.1208702
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/srep07097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009408527
    292 https://doi.org/10.1038/srep07097
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/srep25602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047060497
    295 https://doi.org/10.1038/srep25602
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/srep25749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017478722
    298 https://doi.org/10.1038/srep25749
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1186/1471-2105-11-587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025448148
    301 https://doi.org/10.1186/1471-2105-11-587
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1186/1471-2407-12-562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035298106
    304 https://doi.org/10.1186/1471-2407-12-562
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1186/1479-5876-11-142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035038249
    307 https://doi.org/10.1186/1479-5876-11-142
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1186/1755-8794-4-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016458110
    310 https://doi.org/10.1186/1755-8794-4-49
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/gb-2011-12-4-r41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036416165
    313 https://doi.org/10.1186/gb-2011-12-4-r41
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1186/s12967-014-0281-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051064973
    316 https://doi.org/10.1186/s12967-014-0281-3
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1186/s13059-015-0699-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013803757
    319 https://doi.org/10.1186/s13059-015-0699-9
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1186/s13072-015-0007-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032122929
    322 https://doi.org/10.1186/s13072-015-0007-7
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1186/s13072-015-0014-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028954433
    325 https://doi.org/10.1186/s13072-015-0014-8
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.3858/emm.2010.42.4.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007829870
    328 https://doi.org/10.3858/emm.2010.42.4.032
    329 rdf:type schema:CreativeWork
    330 grid-institutes:None schema:alternateName Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias I Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Barcelona, Spain
    331 REDgene Bioinformatics, Sevilla, Spain
    332 schema:name Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias I Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Barcelona, Spain
    333 REDgene Bioinformatics, Sevilla, Spain
    334 rdf:type schema:Organization
    335 grid-institutes:grid.414816.e schema:alternateName Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville, HUVR/US/CSIC, 41013, Sevilla, Spain
    336 schema:name Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville, HUVR/US/CSIC, 41013, Sevilla, Spain
    337 rdf:type schema:Organization
    338 grid-institutes:grid.429021.c schema:alternateName Present address: Bioinformatics Unit, Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain.
    339 schema:name Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville, HUVR/US/CSIC, 41013, Sevilla, Spain
    340 Present address: Bioinformatics Unit, Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain.
    341 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...