Evidence for trivial Berry phase and absence of chiral anomaly in semimetal NbP View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Sudesh, Pawan Kumar, Prakriti Neha, Tanmoy Das, Satyabrata Patnaik

ABSTRACT

The discovery of Weyl semimetals (WSM) has brought forth the condensed matter realization of Weyl fermions, which were previously theorized as low energy excitations in high energy particle physics. Recently, transition metal mono-pnictides are under intense investigation for understanding properties of inversion-symmetry broken Weyl semimetals. Non-trivial Berry phase and chirality are important markers for characterizing topological aspects of Weyl semimetals. Most recently, theoretical calculations predict strong influence of the position of Weyl nodes with respect to Fermi surface and weak disorder that can drive WSMs into chirally symmetric Dirac semimetals. Using magneto-transport measurements in single crystals of WSM NbP, we observe an exceptionally large magnetoresistance at low temperature, which is non-saturating and linear at high fields. The origin of linear transverse magnetoresistance is assigned to charge carrier mobility fluctuations. Negative longitudinal magnetoresistance is not seen, suggesting lack of well-defined chiral anomaly in NbP. Unambiguous Shubnikov-de Haas oscillations are observed at low temperatures that are correlated to a trivial Berry phase corresponding to Fermi surface extrema at 30.5 Tesla. Our results are important towards identifying topological characteristics of Weyl semimetals and their experimental manifestations in the presence of weak disorder. More... »

PAGES

46062

References to SciGraph publications

  • 2015-08. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP in NATURE PHYSICS
  • 2016-05-17. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP in NATURE COMMUNICATIONS
  • 2003-11. Non-saturating magnetoresistance in heavily disordered semiconductors in NATURE
  • 2005-11. Two-dimensional gas of massless Dirac fermions in graphene in NATURE
  • 1969-03. A PCAC puzzle: π0→γγ in the σ-model in IL NUOVO CIMENTO A (1965-1970)
  • 2016-01. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family in NATURE MATERIALS
  • 2015-12. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires in NATURE COMMUNICATIONS
  • 2016-05. π Berry phase and Zeeman splitting of Weyl semimetal TaP in SCIENTIFIC REPORTS
  • 2015-09. Weyl semimetal phase in the non-centrosymmetric compound TaAs in NATURE PHYSICS
  • 2015-12. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class in NATURE COMMUNICATIONS
  • 2016-05. Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP in SCIENCE CHINA PHYSICS, MECHANICS & ASTRONOMY
  • 2009-06. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface in NATURE PHYSICS
  • 2016-12. Quantum transport in 3D Weyl semimetals: Is there a metal-insulator transition? in THE EUROPEAN PHYSICAL JOURNAL B
  • 2009-06. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface in NATURE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep46062

    DOI

    http://dx.doi.org/10.1038/srep46062

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084759383

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28393930


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Jawaharlal Nehru University", 
              "id": "https://www.grid.ac/institutes/grid.10706.30", 
              "name": [
                "School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sudesh", 
            "id": "sg:person.012670045235.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012670045235.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jawaharlal Nehru University", 
              "id": "https://www.grid.ac/institutes/grid.10706.30", 
              "name": [
                "School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kumar", 
            "givenName": "Pawan", 
            "id": "sg:person.016175041600.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016175041600.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jawaharlal Nehru University", 
              "id": "https://www.grid.ac/institutes/grid.10706.30", 
              "name": [
                "School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Neha", 
            "givenName": "Prakriti", 
            "id": "sg:person.012527054013.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527054013.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Science Bangalore", 
              "id": "https://www.grid.ac/institutes/grid.34980.36", 
              "name": [
                "Department of Physics, Indian Institute of Science, Bengalore-560012, India."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Das", 
            "givenName": "Tanmoy", 
            "id": "sg:person.013126460525.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013126460525.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jawaharlal Nehru University", 
              "id": "https://www.grid.ac/institutes/grid.10706.30", 
              "name": [
                "School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Patnaik", 
            "givenName": "Satyabrata", 
            "id": "sg:person.01234606514.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234606514.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1140/epjb/e2016-70454-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000980517", 
              "https://doi.org/10.1140/epjb/e2016-70454-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2016-70454-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000980517", 
              "https://doi.org/10.1140/epjb/e2016-70454-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.205128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001132402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.205128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001132402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.074033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001879914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.074033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001879914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.094417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002149739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.094417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002149739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002696238", 
              "https://doi.org/10.1038/nmat4457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.127205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006809835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.127205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006809835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1173034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009232583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1173034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009232583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.031023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010845176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.031023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010845176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02823296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012901556", 
              "https://doi.org/10.1007/bf02823296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02823296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012901556", 
              "https://doi.org/10.1007/bf02823296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.035301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013340475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.035301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013340475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014314134", 
              "https://doi.org/10.1038/nphys3372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016208739", 
              "https://doi.org/10.1038/nature02073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016208739", 
              "https://doi.org/10.1038/nature02073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020033716", 
              "https://doi.org/10.1038/nphys3425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021091120", 
              "https://doi.org/10.1038/ncomms11615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/27/15/152201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025121991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.83.205101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025277884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.83.205101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025277884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030423943", 
              "https://doi.org/10.1038/nphys1274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031486841", 
              "https://doi.org/10.1038/ncomms10137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032808151", 
              "https://doi.org/10.1038/ncomms8373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.115208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033344762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.115208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033344762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.011029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034242879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.011029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034242879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036898094", 
              "https://doi.org/10.1038/nphys1270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.88.104412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037744625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.88.104412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037744625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11433-016-5798-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038772429", 
              "https://doi.org/10.1007/s11433-016-5798-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.245120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041734635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.245120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041734635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-444-63314-9.00011-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042342002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.041104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046251388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.041104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046251388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep18674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050508448", 
              "https://doi.org/10.1038/srep18674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-8949/2015/t164/014001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058996477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/18/8/085006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059137676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.177.2426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060440460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.177.2426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060440460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.58.2788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060589694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.58.2788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060589694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.075129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060636458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.075129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060636458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.041203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060646539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.92.041203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060646539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.93.121105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060649520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.93.121105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060649520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.93.121112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060649527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.93.121112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060649527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.066601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.066601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764989"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "The discovery of Weyl semimetals (WSM) has brought forth the condensed matter realization of Weyl fermions, which were previously theorized as low energy excitations in high energy particle physics. Recently, transition metal mono-pnictides are under intense investigation for understanding properties of inversion-symmetry broken Weyl semimetals. Non-trivial Berry phase and chirality are important markers for characterizing topological aspects of Weyl semimetals. Most recently, theoretical calculations predict strong influence of the position of Weyl nodes with respect to Fermi surface and weak disorder that can drive WSMs into chirally symmetric Dirac semimetals. Using magneto-transport measurements in single crystals of WSM NbP, we observe an exceptionally large magnetoresistance at low temperature, which is non-saturating and linear at high fields. The origin of linear transverse magnetoresistance is assigned to charge carrier mobility fluctuations. Negative longitudinal magnetoresistance is not seen, suggesting lack of well-defined chiral anomaly in NbP. Unambiguous Shubnikov-de Haas oscillations are observed at low temperatures that are correlated to a trivial Berry phase corresponding to Fermi surface extrema at 30.5\u2009Tesla. Our results are important towards identifying topological characteristics of Weyl semimetals and their experimental manifestations in the presence of weak disorder.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/srep46062", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Evidence for trivial Berry phase and absence of chiral anomaly in semimetal NbP", 
        "pagination": "46062", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "899fc41db9b9e7d1911a1e4f6b6b39ad6970ab37a3374d4d3dd1b4b41fb835b5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28393930"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep46062"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084759383"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep46062", 
          "https://app.dimensions.ai/details/publication/pub.1084759383"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000563.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/srep/2017/170410/srep46062/full/srep46062.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep46062'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep46062'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep46062'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep46062'


     

    This table displays all metadata directly associated to this object as RDF triples.

    226 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep46062 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Nd6cd9f40477540afb10cfe5212133792
    4 schema:citation sg:pub.10.1007/bf02823296
    5 sg:pub.10.1007/s11433-016-5798-4
    6 sg:pub.10.1038/nature02073
    7 sg:pub.10.1038/nature04233
    8 sg:pub.10.1038/ncomms10137
    9 sg:pub.10.1038/ncomms11615
    10 sg:pub.10.1038/ncomms8373
    11 sg:pub.10.1038/nmat4457
    12 sg:pub.10.1038/nphys1270
    13 sg:pub.10.1038/nphys1274
    14 sg:pub.10.1038/nphys3372
    15 sg:pub.10.1038/nphys3425
    16 sg:pub.10.1038/srep18674
    17 sg:pub.10.1140/epjb/e2016-70454-2
    18 https://doi.org/10.1016/b978-0-444-63314-9.00011-1
    19 https://doi.org/10.1088/0031-8949/2015/t164/014001
    20 https://doi.org/10.1088/0953-8984/27/15/152201
    21 https://doi.org/10.1088/1367-2630/18/8/085006
    22 https://doi.org/10.1103/physrev.177.2426
    23 https://doi.org/10.1103/physrevb.58.2788
    24 https://doi.org/10.1103/physrevb.72.094417
    25 https://doi.org/10.1103/physrevb.83.205101
    26 https://doi.org/10.1103/physrevb.84.035301
    27 https://doi.org/10.1103/physrevb.84.075129
    28 https://doi.org/10.1103/physrevb.86.115208
    29 https://doi.org/10.1103/physrevb.88.104412
    30 https://doi.org/10.1103/physrevb.91.205128
    31 https://doi.org/10.1103/physrevb.92.041104
    32 https://doi.org/10.1103/physrevb.92.041203
    33 https://doi.org/10.1103/physrevb.92.245120
    34 https://doi.org/10.1103/physrevb.93.121105
    35 https://doi.org/10.1103/physrevb.93.121112
    36 https://doi.org/10.1103/physrevd.78.074033
    37 https://doi.org/10.1103/physrevlett.107.127205
    38 https://doi.org/10.1103/physrevlett.116.066601
    39 https://doi.org/10.1103/physrevx.5.011029
    40 https://doi.org/10.1103/physrevx.5.031023
    41 https://doi.org/10.1126/science.1173034
    42 schema:datePublished 2017-12
    43 schema:datePublishedReg 2017-12-01
    44 schema:description The discovery of Weyl semimetals (WSM) has brought forth the condensed matter realization of Weyl fermions, which were previously theorized as low energy excitations in high energy particle physics. Recently, transition metal mono-pnictides are under intense investigation for understanding properties of inversion-symmetry broken Weyl semimetals. Non-trivial Berry phase and chirality are important markers for characterizing topological aspects of Weyl semimetals. Most recently, theoretical calculations predict strong influence of the position of Weyl nodes with respect to Fermi surface and weak disorder that can drive WSMs into chirally symmetric Dirac semimetals. Using magneto-transport measurements in single crystals of WSM NbP, we observe an exceptionally large magnetoresistance at low temperature, which is non-saturating and linear at high fields. The origin of linear transverse magnetoresistance is assigned to charge carrier mobility fluctuations. Negative longitudinal magnetoresistance is not seen, suggesting lack of well-defined chiral anomaly in NbP. Unambiguous Shubnikov-de Haas oscillations are observed at low temperatures that are correlated to a trivial Berry phase corresponding to Fermi surface extrema at 30.5 Tesla. Our results are important towards identifying topological characteristics of Weyl semimetals and their experimental manifestations in the presence of weak disorder.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree true
    48 schema:isPartOf N1a9304a7c82a4caf8161160d7bb28df8
    49 Nce80add348fa4f6fa1e608057b3b72c5
    50 sg:journal.1045337
    51 schema:name Evidence for trivial Berry phase and absence of chiral anomaly in semimetal NbP
    52 schema:pagination 46062
    53 schema:productId N0db1de03ac1f4f57a432b8159e0d4957
    54 N84178b4828324414b4f293d847a9322a
    55 Na818e504fc764bbc9f8d9aae8a4b680a
    56 Ne4a95e260db54311b47dfb2434a357e4
    57 Ne655e46c97204bb182bae193c151b314
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084759383
    59 https://doi.org/10.1038/srep46062
    60 schema:sdDatePublished 2019-04-10T16:50
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher Nc08da49c06e1498f9b6de48f486132ef
    63 schema:url http://www.nature.com/srep/2017/170410/srep46062/full/srep46062.html
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N0db1de03ac1f4f57a432b8159e0d4957 schema:name pubmed_id
    68 schema:value 28393930
    69 rdf:type schema:PropertyValue
    70 N18519b09dafa4628b668dd1f59f25b5d rdf:first sg:person.012527054013.80
    71 rdf:rest N8a4e75871d97434b82bddf15e611f029
    72 N1a9304a7c82a4caf8161160d7bb28df8 schema:issueNumber 1
    73 rdf:type schema:PublicationIssue
    74 N84178b4828324414b4f293d847a9322a schema:name doi
    75 schema:value 10.1038/srep46062
    76 rdf:type schema:PropertyValue
    77 N88626b9ba73a434c89fc1e5fd57487dc rdf:first sg:person.01234606514.54
    78 rdf:rest rdf:nil
    79 N8a4e75871d97434b82bddf15e611f029 rdf:first sg:person.013126460525.52
    80 rdf:rest N88626b9ba73a434c89fc1e5fd57487dc
    81 Na818e504fc764bbc9f8d9aae8a4b680a schema:name nlm_unique_id
    82 schema:value 101563288
    83 rdf:type schema:PropertyValue
    84 Nbc54881c4f884d9dbb83e2e1050a3df1 rdf:first sg:person.016175041600.97
    85 rdf:rest N18519b09dafa4628b668dd1f59f25b5d
    86 Nc08da49c06e1498f9b6de48f486132ef schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 Nce80add348fa4f6fa1e608057b3b72c5 schema:volumeNumber 7
    89 rdf:type schema:PublicationVolume
    90 Nd6cd9f40477540afb10cfe5212133792 rdf:first sg:person.012670045235.44
    91 rdf:rest Nbc54881c4f884d9dbb83e2e1050a3df1
    92 Ne4a95e260db54311b47dfb2434a357e4 schema:name dimensions_id
    93 schema:value pub.1084759383
    94 rdf:type schema:PropertyValue
    95 Ne655e46c97204bb182bae193c151b314 schema:name readcube_id
    96 schema:value 899fc41db9b9e7d1911a1e4f6b6b39ad6970ab37a3374d4d3dd1b4b41fb835b5
    97 rdf:type schema:PropertyValue
    98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Physical Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1045337 schema:issn 2045-2322
    105 schema:name Scientific Reports
    106 rdf:type schema:Periodical
    107 sg:person.01234606514.54 schema:affiliation https://www.grid.ac/institutes/grid.10706.30
    108 schema:familyName Patnaik
    109 schema:givenName Satyabrata
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234606514.54
    111 rdf:type schema:Person
    112 sg:person.012527054013.80 schema:affiliation https://www.grid.ac/institutes/grid.10706.30
    113 schema:familyName Neha
    114 schema:givenName Prakriti
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527054013.80
    116 rdf:type schema:Person
    117 sg:person.012670045235.44 schema:affiliation https://www.grid.ac/institutes/grid.10706.30
    118 schema:familyName Sudesh
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012670045235.44
    120 rdf:type schema:Person
    121 sg:person.013126460525.52 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
    122 schema:familyName Das
    123 schema:givenName Tanmoy
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013126460525.52
    125 rdf:type schema:Person
    126 sg:person.016175041600.97 schema:affiliation https://www.grid.ac/institutes/grid.10706.30
    127 schema:familyName Kumar
    128 schema:givenName Pawan
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016175041600.97
    130 rdf:type schema:Person
    131 sg:pub.10.1007/bf02823296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012901556
    132 https://doi.org/10.1007/bf02823296
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s11433-016-5798-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038772429
    135 https://doi.org/10.1007/s11433-016-5798-4
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1038/nature02073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016208739
    138 https://doi.org/10.1038/nature02073
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    141 https://doi.org/10.1038/nature04233
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/ncomms10137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031486841
    144 https://doi.org/10.1038/ncomms10137
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/ncomms11615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021091120
    147 https://doi.org/10.1038/ncomms11615
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/ncomms8373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808151
    150 https://doi.org/10.1038/ncomms8373
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/nmat4457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002696238
    153 https://doi.org/10.1038/nmat4457
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/nphys1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036898094
    156 https://doi.org/10.1038/nphys1270
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nphys1274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030423943
    159 https://doi.org/10.1038/nphys1274
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nphys3372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014314134
    162 https://doi.org/10.1038/nphys3372
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nphys3425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020033716
    165 https://doi.org/10.1038/nphys3425
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/srep18674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050508448
    168 https://doi.org/10.1038/srep18674
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1140/epjb/e2016-70454-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000980517
    171 https://doi.org/10.1140/epjb/e2016-70454-2
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/b978-0-444-63314-9.00011-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042342002
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1088/0031-8949/2015/t164/014001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058996477
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1088/0953-8984/27/15/152201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025121991
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1088/1367-2630/18/8/085006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059137676
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1103/physrev.177.2426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440460
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1103/physrevb.58.2788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060589694
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1103/physrevb.72.094417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002149739
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1103/physrevb.83.205101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025277884
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1103/physrevb.84.035301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013340475
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1103/physrevb.84.075129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060636458
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1103/physrevb.86.115208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033344762
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1103/physrevb.88.104412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037744625
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1103/physrevb.91.205128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001132402
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1103/physrevb.92.041104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046251388
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1103/physrevb.92.041203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060646539
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1103/physrevb.92.245120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041734635
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1103/physrevb.93.121105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649520
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1103/physrevb.93.121112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649527
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1103/physrevd.78.074033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001879914
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1103/physrevlett.107.127205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006809835
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1103/physrevlett.116.066601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764989
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1103/physrevx.5.011029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034242879
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1103/physrevx.5.031023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010845176
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1126/science.1173034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009232583
    220 rdf:type schema:CreativeWork
    221 https://www.grid.ac/institutes/grid.10706.30 schema:alternateName Jawaharlal Nehru University
    222 schema:name School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
    223 rdf:type schema:Organization
    224 https://www.grid.ac/institutes/grid.34980.36 schema:alternateName Indian Institute of Science Bangalore
    225 schema:name Department of Physics, Indian Institute of Science, Bengalore-560012, India.
    226 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...