Heritability maps of human face morphology through large-scale automated three-dimensional phenotyping View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Dimosthenis Tsagkrasoulis, Pirro Hysi, Tim Spector, Giovanni Montana

ABSTRACT

The human face is a complex trait under strong genetic control, as evidenced by the striking visual similarity between twins. Nevertheless, heritability estimates of facial traits have often been surprisingly low or difficult to replicate. Furthermore, the construction of facial phenotypes that correspond to naturally perceived facial features remains largely a mystery. We present here a large-scale heritability study of face geometry that aims to address these issues. High-resolution, three-dimensional facial models have been acquired on a cohort of 952 twins recruited from the TwinsUK registry, and processed through a novel landmarking workflow, GESSA (Geodesic Ensemble Surface Sampling Algorithm). The algorithm places thousands of landmarks throughout the facial surface and automatically establishes point-wise correspondence across faces. These landmarks enabled us to intuitively characterize facial geometry at a fine level of detail through curvature measurements, yielding accurate heritability maps of the human face (www.heritabilitymaps.info). More... »

PAGES

45885

References to SciGraph publications

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep45885

DOI

http://dx.doi.org/10.1038/srep45885

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084932840

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28422179


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Mathematics, Imperial College London, SW7 2AZ, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsagkrasoulis", 
        "givenName": "Dimosthenis", 
        "id": "sg:person.01224405564.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224405564.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Twin Research and Genetic Epidemiology, King's College London, SE1 7EH, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hysi", 
        "givenName": "Pirro", 
        "id": "sg:person.01254523225.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254523225.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Twin Research and Genetic Epidemiology, King's College London, SE1 7EH, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spector", 
        "givenName": "Tim", 
        "id": "sg:person.014424006237.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424006237.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Mathematics, Imperial College London, SW7 2AZ, London, UK.", 
            "Department of Biomedical Engineering, King's College London, SE1 7EH, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Montana", 
        "givenName": "Giovanni", 
        "id": "sg:person.01237451276.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237451276.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1361-8415(98)80012-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000129855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9416(70)90066-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001118409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyr207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001707041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.20424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001903135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.20424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001903135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/3.2.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003255269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2005.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003290971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajodo.2004.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004567125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03014468500007991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004776165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004887013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijom.2011.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009915025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1978.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011399033", 
          "https://doi.org/10.1038/hdy.1978.10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1978.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011399033", 
          "https://doi.org/10.1038/hdy.1978.10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.222389599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012065175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/03014461003639231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013913317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1186822.1073228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019383115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1974.tb01848.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019389528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.elerap.2010.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019508176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2011.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020234296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-010-9200-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021954891", 
          "https://doi.org/10.1007/s11336-010-9200-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxp008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022039912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxp008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022039912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/hub.2002.0026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022340829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0889-5406(05)81001-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024188189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17277-9_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024525270", 
          "https://doi.org/10.1007/978-3-642-17277-9_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17277-9_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024525270", 
          "https://doi.org/10.1007/978-3-642-17277-9_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-6357-3_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027389245", 
          "https://doi.org/10.1007/978-94-009-6357-3_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1375/twin.4.6.464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027491960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0889-5406(91)70007-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028923622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/832837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030435523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0544.2001.040303.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031951185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5808/gi.2013.11.2.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032045385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-012-0591-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035484342", 
          "https://doi.org/10.1007/s11263-012-0591-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajodo.2005.05.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036825606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0262-8856(92)90076-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036995447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0262-8856(92)90076-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036995447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.an.20.100191.001401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037555277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.paid.2013.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038325848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.57955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039262246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.22054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040077622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhevol.2008.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041499829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042102671", 
          "https://doi.org/10.1038/nrg932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042102671", 
          "https://doi.org/10.1038/nrg932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042710029", 
          "https://doi.org/10.1038/ncomms5800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/368239a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043737700", 
          "https://doi.org/10.1038/368239a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47977-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044010037", 
          "https://doi.org/10.1007/3-540-47977-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsbl.2013.0049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044473064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-30160-0_160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044698582", 
          "https://doi.org/10.1007/978-0-387-30160-0_160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73273-0_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046555086", 
          "https://doi.org/10.1007/978-3-540-73273-0_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03014467500000851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049414288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9416(80)90020-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050066678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330640202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050874666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.1330640202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050874666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050996940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03014460500247972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051028426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00230a776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054982726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.0263-5046.2001.00142.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056731813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ejo/10.1.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059552966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.625113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2012.2186293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2002.1009388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0216045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1073204.1073228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063150430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1375/1369052012803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067169893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5195/d3000.2013.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072683560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5580/87a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073000222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076272757", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/hub.2008.0007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077648972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079773435", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079857717", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081435601", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083328858", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipta.2010.5586721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093715751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tdpvt.2004.1335277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094633326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/avss.2009.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095034541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511616822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098740607"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "The human face is a complex trait under strong genetic control, as evidenced by the striking visual similarity between twins. Nevertheless, heritability estimates of facial traits have often been surprisingly low or difficult to replicate. Furthermore, the construction of facial phenotypes that correspond to naturally perceived facial features remains largely a mystery. We present here a large-scale heritability study of face geometry that aims to address these issues. High-resolution, three-dimensional facial models have been acquired on a cohort of 952 twins recruited from the TwinsUK registry, and processed through a novel landmarking workflow, GESSA (Geodesic Ensemble Surface Sampling Algorithm). The algorithm places thousands of landmarks throughout the facial surface and automatically establishes point-wise correspondence across faces. These landmarks enabled us to intuitively characterize facial geometry at a fine level of detail through curvature measurements, yielding accurate heritability maps of the human face (www.heritabilitymaps.info).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep45885", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Heritability maps of human face morphology through large-scale automated three-dimensional phenotyping", 
    "pagination": "45885", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "982a6ce467a9fcd504881a271e07557aea1b8c6cb67191d433d32cd03e39073a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28422179"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep45885"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084932840"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep45885", 
      "https://app.dimensions.ai/details/publication/pub.1084932840"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000552.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2017/170412/srep45885/full/srep45885.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep45885'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep45885'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep45885'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep45885'


 

This table displays all metadata directly associated to this object as RDF triples.

310 TRIPLES      21 PREDICATES      99 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep45885 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N10f1e91b80b2498bbd74ec5fce495e6a
4 schema:citation sg:pub.10.1007/3-540-47977-5_1
5 sg:pub.10.1007/978-0-387-30160-0_160
6 sg:pub.10.1007/978-3-540-73273-0_28
7 sg:pub.10.1007/978-3-642-17277-9_36
8 sg:pub.10.1007/978-94-009-6357-3_14
9 sg:pub.10.1007/s11263-012-0591-y
10 sg:pub.10.1007/s11336-010-9200-6
11 sg:pub.10.1038/368239a0
12 sg:pub.10.1038/hdy.1978.10
13 sg:pub.10.1038/ncomms5800
14 sg:pub.10.1038/nrg932
15 https://app.dimensions.ai/details/publication/pub.1076272757
16 https://app.dimensions.ai/details/publication/pub.1079773435
17 https://app.dimensions.ai/details/publication/pub.1079857717
18 https://app.dimensions.ai/details/publication/pub.1081435601
19 https://app.dimensions.ai/details/publication/pub.1083328858
20 https://doi.org/10.1002/ajpa.1330640202
21 https://doi.org/10.1002/ajpa.20424
22 https://doi.org/10.1002/humu.22054
23 https://doi.org/10.1016/0002-9416(70)90066-7
24 https://doi.org/10.1016/0002-9416(80)90020-2
25 https://doi.org/10.1016/0262-8856(92)90076-f
26 https://doi.org/10.1016/0889-5406(91)70007-j
27 https://doi.org/10.1016/j.ajhg.2011.12.021
28 https://doi.org/10.1016/j.ajodo.2004.07.033
29 https://doi.org/10.1016/j.ajodo.2005.05.055
30 https://doi.org/10.1016/j.elerap.2010.07.003
31 https://doi.org/10.1016/j.ijom.2011.10.019
32 https://doi.org/10.1016/j.jhevol.2008.02.009
33 https://doi.org/10.1016/j.paid.2013.09.023
34 https://doi.org/10.1016/j.patcog.2005.09.009
35 https://doi.org/10.1016/s0889-5406(05)81001-7
36 https://doi.org/10.1016/s1361-8415(98)80012-1
37 https://doi.org/10.1017/cbo9780511616822
38 https://doi.org/10.1021/ac00230a776
39 https://doi.org/10.1034/j.1600-0544.2001.040303.x
40 https://doi.org/10.1046/j.0263-5046.2001.00142.x
41 https://doi.org/10.1073/pnas.222389599
42 https://doi.org/10.1080/03014460500247972
43 https://doi.org/10.1080/03014467500000851
44 https://doi.org/10.1080/03014468500007991
45 https://doi.org/10.1093/bib/3.2.119
46 https://doi.org/10.1093/biostatistics/kxp008
47 https://doi.org/10.1093/ejo/10.1.27
48 https://doi.org/10.1093/ije/dyr207
49 https://doi.org/10.1098/rsbl.2013.0049
50 https://doi.org/10.1109/34.625113
51 https://doi.org/10.1109/avss.2009.58
52 https://doi.org/10.1109/ipta.2010.5586721
53 https://doi.org/10.1109/tac.1974.1100705
54 https://doi.org/10.1109/tdpvt.2004.1335277
55 https://doi.org/10.1109/tifs.2012.2186293
56 https://doi.org/10.1109/tmi.2002.1009388
57 https://doi.org/10.1111/j.1469-1809.1974.tb01848.x
58 https://doi.org/10.1117/12.57955
59 https://doi.org/10.1137/0216045
60 https://doi.org/10.1145/1073204.1073228
61 https://doi.org/10.1145/1186822.1073228
62 https://doi.org/10.1146/annurev.an.20.100191.001401
63 https://doi.org/10.1155/2014/832837
64 https://doi.org/10.1353/hub.2002.0026
65 https://doi.org/10.1353/hub.2008.0007
66 https://doi.org/10.1371/journal.pcbi.1003375
67 https://doi.org/10.1371/journal.pgen.1004224
68 https://doi.org/10.1375/1369052012803
69 https://doi.org/10.1375/twin.4.6.464
70 https://doi.org/10.3109/03014461003639231
71 https://doi.org/10.5195/d3000.2013.14
72 https://doi.org/10.5580/87a
73 https://doi.org/10.5808/gi.2013.11.2.83
74 schema:datePublished 2017-12
75 schema:datePublishedReg 2017-12-01
76 schema:description The human face is a complex trait under strong genetic control, as evidenced by the striking visual similarity between twins. Nevertheless, heritability estimates of facial traits have often been surprisingly low or difficult to replicate. Furthermore, the construction of facial phenotypes that correspond to naturally perceived facial features remains largely a mystery. We present here a large-scale heritability study of face geometry that aims to address these issues. High-resolution, three-dimensional facial models have been acquired on a cohort of 952 twins recruited from the TwinsUK registry, and processed through a novel landmarking workflow, GESSA (Geodesic Ensemble Surface Sampling Algorithm). The algorithm places thousands of landmarks throughout the facial surface and automatically establishes point-wise correspondence across faces. These landmarks enabled us to intuitively characterize facial geometry at a fine level of detail through curvature measurements, yielding accurate heritability maps of the human face (www.heritabilitymaps.info).
77 schema:genre research_article
78 schema:inLanguage en
79 schema:isAccessibleForFree true
80 schema:isPartOf N848211e0d4a54202acf0a2e926a1cfd6
81 N9461d0382e0943a1a1e88930c7445e04
82 sg:journal.1045337
83 schema:name Heritability maps of human face morphology through large-scale automated three-dimensional phenotyping
84 schema:pagination 45885
85 schema:productId N2a5f115018cb47c2a716f5271a2c78ba
86 N93ace7151d8c4278b7fba0f8aa449fe9
87 Ne494bdc30d2547b1af370983cb3c9bd6
88 Nee5c092234854be894e93a0582582a46
89 Nfedf58fe4f5d4caa91000f90afb1ffb5
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084932840
91 https://doi.org/10.1038/srep45885
92 schema:sdDatePublished 2019-04-10T15:08
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N79b4102df14c47449aec3b197f9aaa9a
95 schema:url http://www.nature.com/srep/2017/170412/srep45885/full/srep45885.html
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N10f1e91b80b2498bbd74ec5fce495e6a rdf:first sg:person.01224405564.33
100 rdf:rest N5fd26b567d2e493e800312bc291f6151
101 N2a5f115018cb47c2a716f5271a2c78ba schema:name pubmed_id
102 schema:value 28422179
103 rdf:type schema:PropertyValue
104 N5fd26b567d2e493e800312bc291f6151 rdf:first sg:person.01254523225.05
105 rdf:rest Nbe2dae4b2038427693e15e6605823b93
106 N79b4102df14c47449aec3b197f9aaa9a schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N848211e0d4a54202acf0a2e926a1cfd6 schema:volumeNumber 7
109 rdf:type schema:PublicationVolume
110 N93ace7151d8c4278b7fba0f8aa449fe9 schema:name nlm_unique_id
111 schema:value 101563288
112 rdf:type schema:PropertyValue
113 N9461d0382e0943a1a1e88930c7445e04 schema:issueNumber 1
114 rdf:type schema:PublicationIssue
115 Nbe2dae4b2038427693e15e6605823b93 rdf:first sg:person.014424006237.85
116 rdf:rest Nddfc80411ca748588c3442a037a4feb0
117 Nddfc80411ca748588c3442a037a4feb0 rdf:first sg:person.01237451276.26
118 rdf:rest rdf:nil
119 Ne494bdc30d2547b1af370983cb3c9bd6 schema:name dimensions_id
120 schema:value pub.1084932840
121 rdf:type schema:PropertyValue
122 Nee5c092234854be894e93a0582582a46 schema:name doi
123 schema:value 10.1038/srep45885
124 rdf:type schema:PropertyValue
125 Nfedf58fe4f5d4caa91000f90afb1ffb5 schema:name readcube_id
126 schema:value 982a6ce467a9fcd504881a271e07557aea1b8c6cb67191d433d32cd03e39073a
127 rdf:type schema:PropertyValue
128 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
129 schema:name Biological Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
132 schema:name Genetics
133 rdf:type schema:DefinedTerm
134 sg:journal.1045337 schema:issn 2045-2322
135 schema:name Scientific Reports
136 rdf:type schema:Periodical
137 sg:person.01224405564.33 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
138 schema:familyName Tsagkrasoulis
139 schema:givenName Dimosthenis
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224405564.33
141 rdf:type schema:Person
142 sg:person.01237451276.26 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
143 schema:familyName Montana
144 schema:givenName Giovanni
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237451276.26
146 rdf:type schema:Person
147 sg:person.01254523225.05 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
148 schema:familyName Hysi
149 schema:givenName Pirro
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254523225.05
151 rdf:type schema:Person
152 sg:person.014424006237.85 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
153 schema:familyName Spector
154 schema:givenName Tim
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424006237.85
156 rdf:type schema:Person
157 sg:pub.10.1007/3-540-47977-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044010037
158 https://doi.org/10.1007/3-540-47977-5_1
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/978-0-387-30160-0_160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044698582
161 https://doi.org/10.1007/978-0-387-30160-0_160
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/978-3-540-73273-0_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046555086
164 https://doi.org/10.1007/978-3-540-73273-0_28
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/978-3-642-17277-9_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024525270
167 https://doi.org/10.1007/978-3-642-17277-9_36
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/978-94-009-6357-3_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027389245
170 https://doi.org/10.1007/978-94-009-6357-3_14
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s11263-012-0591-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035484342
173 https://doi.org/10.1007/s11263-012-0591-y
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s11336-010-9200-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021954891
176 https://doi.org/10.1007/s11336-010-9200-6
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/368239a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043737700
179 https://doi.org/10.1038/368239a0
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/hdy.1978.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011399033
182 https://doi.org/10.1038/hdy.1978.10
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/ncomms5800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042710029
185 https://doi.org/10.1038/ncomms5800
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nrg932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042102671
188 https://doi.org/10.1038/nrg932
189 rdf:type schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1076272757 schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1079773435 schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1079857717 schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1081435601 schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1083328858 schema:CreativeWork
195 https://doi.org/10.1002/ajpa.1330640202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050874666
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/ajpa.20424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001903135
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/humu.22054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040077622
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/0002-9416(70)90066-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001118409
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/0002-9416(80)90020-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050066678
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/0262-8856(92)90076-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1036995447
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/0889-5406(91)70007-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1028923622
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.ajhg.2011.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020234296
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.ajodo.2004.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004567125
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.ajodo.2005.05.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036825606
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.elerap.2010.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019508176
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.ijom.2011.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009915025
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.jhevol.2008.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041499829
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.paid.2013.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038325848
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.patcog.2005.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003290971
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/s0889-5406(05)81001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024188189
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/s1361-8415(98)80012-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000129855
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1017/cbo9780511616822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740607
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1021/ac00230a776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054982726
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1034/j.1600-0544.2001.040303.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031951185
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1046/j.0263-5046.2001.00142.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056731813
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1073/pnas.222389599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012065175
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1080/03014460500247972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051028426
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1080/03014467500000851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049414288
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1080/03014468500007991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004776165
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/bib/3.2.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003255269
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/biostatistics/kxp008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022039912
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/ejo/10.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059552966
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/ije/dyr207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001707041
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1098/rsbl.2013.0049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044473064
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1109/34.625113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156678
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1109/avss.2009.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095034541
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1109/ipta.2010.5586721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093715751
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1109/tdpvt.2004.1335277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094633326
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1109/tifs.2012.2186293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629973
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1109/tmi.2002.1009388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694243
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1111/j.1469-1809.1974.tb01848.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019389528
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1117/12.57955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039262246
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1137/0216045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841991
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1145/1073204.1073228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063150430
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1145/1186822.1073228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019383115
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1146/annurev.an.20.100191.001401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037555277
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1155/2014/832837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030435523
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1353/hub.2002.0026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022340829
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1353/hub.2008.0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077648972
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1371/journal.pcbi.1003375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050996940
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1371/journal.pgen.1004224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004887013
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1375/1369052012803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067169893
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1375/twin.4.6.464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027491960
294 rdf:type schema:CreativeWork
295 https://doi.org/10.3109/03014461003639231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013913317
296 rdf:type schema:CreativeWork
297 https://doi.org/10.5195/d3000.2013.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072683560
298 rdf:type schema:CreativeWork
299 https://doi.org/10.5580/87a schema:sameAs https://app.dimensions.ai/details/publication/pub.1073000222
300 rdf:type schema:CreativeWork
301 https://doi.org/10.5808/gi.2013.11.2.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032045385
302 rdf:type schema:CreativeWork
303 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
304 schema:name Department of Biomedical Engineering, King's College London, SE1 7EH, London, UK.
305 Department of Mathematics, Imperial College London, SW7 2AZ, London, UK.
306 Department of Twin Research and Genetic Epidemiology, King's College London, SE1 7EH, London, UK.
307 rdf:type schema:Organization
308 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
309 schema:name Department of Mathematics, Imperial College London, SW7 2AZ, London, UK.
310 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...