Quantifying edge significance on maintaining global connectivity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Yuhua Qian, Yebin Li, Min Zhang, Guoshuai Ma, Furong Lu

ABSTRACT

Global connectivity is a quite important issue for networks. The failures of some key edges may lead to breakdown of the whole system. How to find them will provide a better understanding on system robustness. Based on topological information, we propose an approach named LE (link entropy) to quantify the edge significance on maintaining global connectivity. Then we compare the LE with the other six acknowledged indices on the edge significance: the edge betweenness centrality, degree product, bridgeness, diffusion importance, topological overlap and k-path edge centrality. Experimental results show that the LE approach outperforms in quantifying edge significance on maintaining global connectivity. More... »

PAGES

45380

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep45380

DOI

http://dx.doi.org/10.1038/srep45380

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084133207

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28349923


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan, 030006, China.", 
            "School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Yuhua", 
        "id": "sg:person.011532214505.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011532214505.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yebin", 
        "id": "sg:person.012016502063.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016502063.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Min", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Guoshuai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Furong", 
        "id": "sg:person.01227517520.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227517520.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02084422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001926487", 
          "https://doi.org/10.1007/bf02084422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02084422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001926487", 
          "https://doi.org/10.1007/bf02084422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-15916-4_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002813379", 
          "https://doi.org/10.1007/978-3-319-15916-4_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0400087101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003759656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.062812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007548939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.062812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007548939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35019019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269744", 
          "https://doi.org/10.1038/35019019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35019019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269744", 
          "https://doi.org/10.1038/35019019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.026116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008587705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.026116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008587705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013107385", 
          "https://doi.org/10.1038/nphys2162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390334.1390387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016224993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.122653799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10618-010-0181-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021912578", 
          "https://doi.org/10.1007/s10618-010-0181-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2010/10/p10011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022857837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2010/10/p10011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022857837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2433396.2433471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023095048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-011-0445-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023796676", 
          "https://doi.org/10.1007/s10115-011-0445-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-011-0445-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023796676", 
          "https://doi.org/10.1007/s10115-011-0445-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018730601170527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024301493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2380718.2380734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024504762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610245104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025075085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2015.12.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031336081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2012.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031752168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12079-4_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039831213", 
          "https://doi.org/10.1007/978-3-642-12079-4_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12079-4_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039831213", 
          "https://doi.org/10.1007/978-3-642-12079-4_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1401890.1401945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040594121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sf/63.2.482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040723593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1718487.1718518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044125115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1772690.1772790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045921636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbspro.2013.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047164477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1927.0118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047710630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep13172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053082430", 
          "https://doi.org/10.1038/srep13172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/225469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058544967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.046103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.046103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.026101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.026101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2007.908954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061569727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1360/972013-1280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065071493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2200/s00298ed1v01y201009dmk003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069288180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2579058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070004839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccdc.2010.5498458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095250602"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Global connectivity is a quite important issue for networks. The failures of some key edges may lead to breakdown of the whole system. How to find them will provide a better understanding on system robustness. Based on topological information, we propose an approach named LE (link entropy) to quantify the edge significance on maintaining global connectivity. Then we compare the LE with the other six acknowledged indices on the edge significance: the edge betweenness centrality, degree product, bridgeness, diffusion importance, topological overlap and k-path edge centrality. Experimental results show that the LE approach outperforms in quantifying edge significance on maintaining global connectivity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep45380", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Quantifying edge significance on maintaining global connectivity", 
    "pagination": "45380", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "08dfb55b17f600d7e7e57d953c2d512c307f6ec35d483471e3ce0f25f7064bf0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28349923"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep45380"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084133207"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep45380", 
      "https://app.dimensions.ai/details/publication/pub.1084133207"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000519.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2017/170328/srep45380/full/srep45380.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep45380'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep45380'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep45380'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep45380'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep45380 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N6bd734ba22ee4cc59ff4ade8874b9d04
4 schema:citation sg:pub.10.1007/978-3-319-15916-4_9
5 sg:pub.10.1007/978-3-642-12079-4_20
6 sg:pub.10.1007/bf02084422
7 sg:pub.10.1007/s10115-011-0445-x
8 sg:pub.10.1007/s10618-010-0181-y
9 sg:pub.10.1038/35019019
10 sg:pub.10.1038/nphys2162
11 sg:pub.10.1038/srep13172
12 https://doi.org/10.1016/j.knosys.2012.01.007
13 https://doi.org/10.1016/j.physa.2015.12.045
14 https://doi.org/10.1016/j.sbspro.2013.05.056
15 https://doi.org/10.1073/pnas.0400087101
16 https://doi.org/10.1073/pnas.0610245104
17 https://doi.org/10.1073/pnas.122653799
18 https://doi.org/10.1080/00018730601170527
19 https://doi.org/10.1086/225469
20 https://doi.org/10.1088/1742-5468/2010/10/p10011
21 https://doi.org/10.1093/sf/63.2.482
22 https://doi.org/10.1098/rspa.1927.0118
23 https://doi.org/10.1103/physreve.76.046103
24 https://doi.org/10.1103/physreve.77.026101
25 https://doi.org/10.1103/physreve.84.026116
26 https://doi.org/10.1103/physreve.88.062812
27 https://doi.org/10.1103/revmodphys.74.47
28 https://doi.org/10.1109/ccdc.2010.5498458
29 https://doi.org/10.1109/tcsii.2007.908954
30 https://doi.org/10.1145/1390334.1390387
31 https://doi.org/10.1145/1401890.1401945
32 https://doi.org/10.1145/1718487.1718518
33 https://doi.org/10.1145/1772690.1772790
34 https://doi.org/10.1145/2380718.2380734
35 https://doi.org/10.1145/2433396.2433471
36 https://doi.org/10.1360/972013-1280
37 https://doi.org/10.2200/s00298ed1v01y201009dmk003
38 https://doi.org/10.2307/2579058
39 schema:datePublished 2017-12
40 schema:datePublishedReg 2017-12-01
41 schema:description Global connectivity is a quite important issue for networks. The failures of some key edges may lead to breakdown of the whole system. How to find them will provide a better understanding on system robustness. Based on topological information, we propose an approach named LE (link entropy) to quantify the edge significance on maintaining global connectivity. Then we compare the LE with the other six acknowledged indices on the edge significance: the edge betweenness centrality, degree product, bridgeness, diffusion importance, topological overlap and k-path edge centrality. Experimental results show that the LE approach outperforms in quantifying edge significance on maintaining global connectivity.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N50f88b2478744864852caf35bcb7ac34
46 Ndd3829bd608e406d87cc7e863d32ee84
47 sg:journal.1045337
48 schema:name Quantifying edge significance on maintaining global connectivity
49 schema:pagination 45380
50 schema:productId N19f8f10224bc4693855c9e735349e304
51 N2668a563019846dea7fec87b0d83ada6
52 N5b8639d7e143425286472325e7780b2d
53 N97bb3cd516874bcda3a7b20ce510c2e0
54 Ndce743fd2723420b94a45f0973ea04e3
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084133207
56 https://doi.org/10.1038/srep45380
57 schema:sdDatePublished 2019-04-10T19:58
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N0a8cdb74c35c43208de30f9394e973a3
60 schema:url http://www.nature.com/srep/2017/170328/srep45380/full/srep45380.html
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N02be78352fbb4ca09104f683236e23d4 rdf:first sg:person.01227517520.73
65 rdf:rest rdf:nil
66 N0a8cdb74c35c43208de30f9394e973a3 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N19f8f10224bc4693855c9e735349e304 schema:name pubmed_id
69 schema:value 28349923
70 rdf:type schema:PropertyValue
71 N2668a563019846dea7fec87b0d83ada6 schema:name dimensions_id
72 schema:value pub.1084133207
73 rdf:type schema:PropertyValue
74 N28ef6347e9f24d8284e163c0e4e528f5 rdf:first N6529ca49d77543ee93eeff0a5582209e
75 rdf:rest N949dcc3dfc004f4697390f709f911efa
76 N50f88b2478744864852caf35bcb7ac34 schema:volumeNumber 7
77 rdf:type schema:PublicationVolume
78 N5b8639d7e143425286472325e7780b2d schema:name readcube_id
79 schema:value 08dfb55b17f600d7e7e57d953c2d512c307f6ec35d483471e3ce0f25f7064bf0
80 rdf:type schema:PropertyValue
81 N6529ca49d77543ee93eeff0a5582209e schema:affiliation https://www.grid.ac/institutes/grid.163032.5
82 schema:familyName Zhang
83 schema:givenName Min
84 rdf:type schema:Person
85 N6bd734ba22ee4cc59ff4ade8874b9d04 rdf:first sg:person.011532214505.77
86 rdf:rest N787d54a4f53742a6a95deaa587095c5d
87 N787d54a4f53742a6a95deaa587095c5d rdf:first sg:person.012016502063.07
88 rdf:rest N28ef6347e9f24d8284e163c0e4e528f5
89 N8fc4873616ab45febf3f40c65eee7ce7 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
90 schema:familyName Ma
91 schema:givenName Guoshuai
92 rdf:type schema:Person
93 N949dcc3dfc004f4697390f709f911efa rdf:first N8fc4873616ab45febf3f40c65eee7ce7
94 rdf:rest N02be78352fbb4ca09104f683236e23d4
95 N97bb3cd516874bcda3a7b20ce510c2e0 schema:name doi
96 schema:value 10.1038/srep45380
97 rdf:type schema:PropertyValue
98 Ndce743fd2723420b94a45f0973ea04e3 schema:name nlm_unique_id
99 schema:value 101563288
100 rdf:type schema:PropertyValue
101 Ndd3829bd608e406d87cc7e863d32ee84 schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
107 schema:name Computation Theory and Mathematics
108 rdf:type schema:DefinedTerm
109 sg:journal.1045337 schema:issn 2045-2322
110 schema:name Scientific Reports
111 rdf:type schema:Periodical
112 sg:person.011532214505.77 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
113 schema:familyName Qian
114 schema:givenName Yuhua
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011532214505.77
116 rdf:type schema:Person
117 sg:person.012016502063.07 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
118 schema:familyName Li
119 schema:givenName Yebin
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016502063.07
121 rdf:type schema:Person
122 sg:person.01227517520.73 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
123 schema:familyName Lu
124 schema:givenName Furong
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227517520.73
126 rdf:type schema:Person
127 sg:pub.10.1007/978-3-319-15916-4_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002813379
128 https://doi.org/10.1007/978-3-319-15916-4_9
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-3-642-12079-4_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039831213
131 https://doi.org/10.1007/978-3-642-12079-4_20
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf02084422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001926487
134 https://doi.org/10.1007/bf02084422
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s10115-011-0445-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023796676
137 https://doi.org/10.1007/s10115-011-0445-x
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s10618-010-0181-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1021912578
140 https://doi.org/10.1007/s10618-010-0181-y
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/35019019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008269744
143 https://doi.org/10.1038/35019019
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nphys2162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013107385
146 https://doi.org/10.1038/nphys2162
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/srep13172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053082430
149 https://doi.org/10.1038/srep13172
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.knosys.2012.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031752168
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.physa.2015.12.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031336081
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.sbspro.2013.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047164477
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1073/pnas.0400087101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003759656
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1073/pnas.0610245104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025075085
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1080/00018730601170527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024301493
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1086/225469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058544967
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/1742-5468/2010/10/p10011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022857837
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/sf/63.2.482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040723593
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1098/rspa.1927.0118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047710630
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physreve.76.046103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060736565
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreve.77.026101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060736996
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physreve.84.026116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008587705
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physreve.88.062812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007548939
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/ccdc.2010.5498458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095250602
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/tcsii.2007.908954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061569727
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1145/1390334.1390387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016224993
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1145/1401890.1401945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040594121
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1145/1718487.1718518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044125115
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1145/1772690.1772790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045921636
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1145/2380718.2380734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024504762
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1145/2433396.2433471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023095048
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1360/972013-1280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065071493
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2200/s00298ed1v01y201009dmk003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069288180
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2307/2579058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070004839
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.163032.5 schema:alternateName Shanxi University
206 schema:name Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
207 Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, China.
208 School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China.
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...