Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Jingzhi Su, Renhe Zhang, Huijun Wang

ABSTRACT

Closely following the hiatus warming period, two astonishing high temperature records reached in 2014 and 2015 consecutively. To investigate the occurrence features of record-breaking high temperatures in recent years, a new index focusing the frequency of the top 10 high annual mean temperatures was defined in this study. Analyses based on this index shown that record-breaking high temperatures occurred over most regions of the globe with a salient increasing trend after 1960 s, even during the so-called hiatus period. Overlapped on the ongoing background warming trend and the interdecadal climate variabilities, the El Niño events, particularly the strong ones, can make a significant contribution to the occurrence of high temperatures on interannual timescale. High temperatures associated with El Niño events mainly occurred during the winter annual period. As the Pacific Decadal Oscillation (PDO) struggled back to its positive phase since 2014, the global warming returned back to a new accelerated warming period, marked by the record-breaking high temperatures in 2014. Intensified by the super strong El Niño, successive high records occurred in 2015 and 2016. Higher frequencies of record high temperatures would occur in the near future because the PDO tends to maintain a continuously positive phase. More... »

PAGES

43735

References to SciGraph publications

  • 2013-09. Recent global-warming hiatus tied to equatorial Pacific surface cooling in NATURE
  • 2016-08. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability in NATURE GEOSCIENCE
  • 2012-07. Tracking Earth’s Energy: From El Niño to Global Warming in SURVEYS IN GEOPHYSICS
  • 2012-02. The Arctic’s rapidly shrinking sea ice cover: a research synthesis in CLIMATIC CHANGE
  • 2010-04. The central role of diminishing sea ice in recent Arctic temperature amplification in NATURE
  • 2013-03. Deep-ocean heat uptake and equilibrium climate response in CLIMATE DYNAMICS
  • 2015-06. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes in NATURE CLIMATE CHANGE
  • 2016-11. Multi-year persistence of the 2014/15 North Pacific marine heatwave in NATURE CLIMATE CHANGE
  • 2013-09. Overestimated global warming over the past 20 years in NATURE CLIMATE CHANGE
  • 2012-02. Why is Indian Ocean warming consistently? in CLIMATIC CHANGE
  • 2016-06-02. Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation in NATURE COMMUNICATIONS
  • 2016-04. Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework in CLIMATE DYNAMICS
  • 2008-11. Attribution of polar warming to human influence in NATURE GEOSCIENCE
  • 2014-03. No pause in the increase of hot temperature extremes in NATURE CLIMATE CHANGE
  • 2016-07. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport in NATURE GEOSCIENCE
  • 2015-05. Strong influence of westerly wind bursts on El Nino diversity in NATURE GEOSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep43735

    DOI

    http://dx.doi.org/10.1038/srep43735

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084131640

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28256561


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "China Meteorological Administration", 
              "id": "https://www.grid.ac/institutes/grid.8658.3", 
              "name": [
                "State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Su", 
            "givenName": "Jingzhi", 
            "id": "sg:person.016572431101.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016572431101.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fudan University", 
              "id": "https://www.grid.ac/institutes/grid.8547.e", 
              "name": [
                "Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Renhe", 
            "id": "sg:person.014116435243.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014116435243.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University of Information Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.260478.f", 
              "name": [
                "Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University for Information Science and Technology, Nanjing, 210044, China."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Huijun", 
            "id": "sg:person.016064731601.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016064731601.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1175/bams-d-16-0183.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000862600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2008gl033631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001178954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2000jd000298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004644622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005504219", 
              "https://doi.org/10.1038/nature12534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/jcli-d-14-00471.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005812749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0485(1990)020<0722:troago>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008180030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-015-2715-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008197727", 
              "https://doi.org/10.1007/s00382-015-2715-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010217899", 
              "https://doi.org/10.1038/nclimate1972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013380816", 
              "https://doi.org/10.1038/ngeo2751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2010rg000345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016459561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2010rg000345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016459561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate3082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016459736", 
              "https://doi.org/10.1038/nclimate3082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10712-011-9150-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017259888", 
              "https://doi.org/10.1007/s10712-011-9150-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10712-011-9150-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017259888", 
              "https://doi.org/10.1007/s10712-011-9150-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2002jd002670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020320930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2014gl059520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021212552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021744397", 
              "https://doi.org/10.1038/ncomms11718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2006gl028044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021838118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022920192", 
              "https://doi.org/10.1038/ngeo2399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1350-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023905729", 
              "https://doi.org/10.1007/s00382-012-1350-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024056336", 
              "https://doi.org/10.1038/ngeo338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2001jd001143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024832582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029118492", 
              "https://doi.org/10.1038/nature09051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaa5632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031432406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aac9225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032680983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0121-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041089224", 
              "https://doi.org/10.1007/s10584-011-0121-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042106860", 
              "https://doi.org/10.1038/nclimate2145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2006jc003798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045108661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045736007", 
              "https://doi.org/10.1038/nclimate2617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048074941", 
              "https://doi.org/10.1038/ngeo2731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2006gl025891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050991141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0101-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052407476", 
              "https://doi.org/10.1007/s10584-011-0101-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0442(2002)015<2205:tabtio>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052657927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/2016bamsstateoftheclimate.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053487201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2005gl025244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053655267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2005gl025244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053655267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1182488", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062461277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1182488", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062461277"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "Closely following the hiatus warming period, two astonishing high temperature records reached in 2014 and 2015 consecutively. To investigate the occurrence features of record-breaking high temperatures in recent years, a new index focusing the frequency of the top 10 high annual mean temperatures was defined in this study. Analyses based on this index shown that record-breaking high temperatures occurred over most regions of the globe with a salient increasing trend after 1960\u2009s, even during the so-called hiatus period. Overlapped on the ongoing background warming trend and the interdecadal climate variabilities, the El Ni\u00f1o events, particularly the strong ones, can make a significant contribution to the occurrence of high temperatures on interannual timescale. High temperatures associated with El Ni\u00f1o events mainly occurred during the winter annual period. As the Pacific Decadal Oscillation (PDO) struggled back to its positive phase since 2014, the global warming returned back to a new accelerated warming period, marked by the record-breaking high temperatures in 2014. Intensified by the super strong El Ni\u00f1o, successive high records occurred in 2015 and 2016. Higher frequencies of record high temperatures would occur in the near future because the PDO tends to maintain a continuously positive phase.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/srep43735", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming", 
        "pagination": "43735", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a50575d4229fd621b2cd98ac1763169793aec60e716d085337c3a9e5db7dc3a8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28256561"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep43735"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084131640"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep43735", 
          "https://app.dimensions.ai/details/publication/pub.1084131640"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000470.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/srep/2017/170303/srep43735/full/srep43735.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep43735'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep43735'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep43735'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep43735'


     

    This table displays all metadata directly associated to this object as RDF triples.

    206 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep43735 schema:about anzsrc-for:04
    2 anzsrc-for:0403
    3 schema:author Nda1adfea668c4eed9fbbe3f1acd916c6
    4 schema:citation sg:pub.10.1007/s00382-012-1350-z
    5 sg:pub.10.1007/s00382-015-2715-x
    6 sg:pub.10.1007/s10584-011-0101-1
    7 sg:pub.10.1007/s10584-011-0121-x
    8 sg:pub.10.1007/s10712-011-9150-2
    9 sg:pub.10.1038/nature09051
    10 sg:pub.10.1038/nature12534
    11 sg:pub.10.1038/nclimate1972
    12 sg:pub.10.1038/nclimate2145
    13 sg:pub.10.1038/nclimate2617
    14 sg:pub.10.1038/nclimate3082
    15 sg:pub.10.1038/ncomms11718
    16 sg:pub.10.1038/ngeo2399
    17 sg:pub.10.1038/ngeo2731
    18 sg:pub.10.1038/ngeo2751
    19 sg:pub.10.1038/ngeo338
    20 https://doi.org/10.1002/2014gl059520
    21 https://doi.org/10.1029/2000jd000298
    22 https://doi.org/10.1029/2001jd001143
    23 https://doi.org/10.1029/2002jd002670
    24 https://doi.org/10.1029/2005gl025244
    25 https://doi.org/10.1029/2006gl025891
    26 https://doi.org/10.1029/2006gl028044
    27 https://doi.org/10.1029/2006jc003798
    28 https://doi.org/10.1029/2008gl033631
    29 https://doi.org/10.1029/2010rg000345
    30 https://doi.org/10.1126/science.1182488
    31 https://doi.org/10.1126/science.aaa5632
    32 https://doi.org/10.1126/science.aac9225
    33 https://doi.org/10.1175/1520-0442(2002)015<2205:tabtio>2.0.co;2
    34 https://doi.org/10.1175/1520-0485(1990)020<0722:troago>2.0.co;2
    35 https://doi.org/10.1175/2016bamsstateoftheclimate.1
    36 https://doi.org/10.1175/bams-d-16-0183.1
    37 https://doi.org/10.1175/jcli-d-14-00471.1
    38 schema:datePublished 2017-12
    39 schema:datePublishedReg 2017-12-01
    40 schema:description Closely following the hiatus warming period, two astonishing high temperature records reached in 2014 and 2015 consecutively. To investigate the occurrence features of record-breaking high temperatures in recent years, a new index focusing the frequency of the top 10 high annual mean temperatures was defined in this study. Analyses based on this index shown that record-breaking high temperatures occurred over most regions of the globe with a salient increasing trend after 1960 s, even during the so-called hiatus period. Overlapped on the ongoing background warming trend and the interdecadal climate variabilities, the El Niño events, particularly the strong ones, can make a significant contribution to the occurrence of high temperatures on interannual timescale. High temperatures associated with El Niño events mainly occurred during the winter annual period. As the Pacific Decadal Oscillation (PDO) struggled back to its positive phase since 2014, the global warming returned back to a new accelerated warming period, marked by the record-breaking high temperatures in 2014. Intensified by the super strong El Niño, successive high records occurred in 2015 and 2016. Higher frequencies of record high temperatures would occur in the near future because the PDO tends to maintain a continuously positive phase.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N28b7443f36934b7b8e41179dd3e13d7b
    45 N3e8ccf457ec649b2aae5bc6c062b3d53
    46 sg:journal.1045337
    47 schema:name Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming
    48 schema:pagination 43735
    49 schema:productId N06389186e826492aaa74207e39c51b58
    50 N356bf5767c3045ecb1e551bf5f5aef48
    51 N860f1929a59a4ef28471026d74d0c844
    52 Nae14c802ebb64b058df1af423fd3de4b
    53 Nc0ddc5059e8043e3a41f48b69615888a
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131640
    55 https://doi.org/10.1038/srep43735
    56 schema:sdDatePublished 2019-04-10T13:59
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher Ndbad13e1e54341d38d51d3e138fc63dc
    59 schema:url http://www.nature.com/srep/2017/170303/srep43735/full/srep43735.html
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N06389186e826492aaa74207e39c51b58 schema:name nlm_unique_id
    64 schema:value 101563288
    65 rdf:type schema:PropertyValue
    66 N158b19a15dc9422386e101a34eac5e73 rdf:first sg:person.014116435243.21
    67 rdf:rest N8d3f9505d3164fcea1cba86da0cf8bba
    68 N28b7443f36934b7b8e41179dd3e13d7b schema:volumeNumber 7
    69 rdf:type schema:PublicationVolume
    70 N356bf5767c3045ecb1e551bf5f5aef48 schema:name readcube_id
    71 schema:value a50575d4229fd621b2cd98ac1763169793aec60e716d085337c3a9e5db7dc3a8
    72 rdf:type schema:PropertyValue
    73 N3e8ccf457ec649b2aae5bc6c062b3d53 schema:issueNumber 1
    74 rdf:type schema:PublicationIssue
    75 N860f1929a59a4ef28471026d74d0c844 schema:name doi
    76 schema:value 10.1038/srep43735
    77 rdf:type schema:PropertyValue
    78 N8d3f9505d3164fcea1cba86da0cf8bba rdf:first sg:person.016064731601.54
    79 rdf:rest rdf:nil
    80 Nae14c802ebb64b058df1af423fd3de4b schema:name dimensions_id
    81 schema:value pub.1084131640
    82 rdf:type schema:PropertyValue
    83 Nc0ddc5059e8043e3a41f48b69615888a schema:name pubmed_id
    84 schema:value 28256561
    85 rdf:type schema:PropertyValue
    86 Nda1adfea668c4eed9fbbe3f1acd916c6 rdf:first sg:person.016572431101.85
    87 rdf:rest N158b19a15dc9422386e101a34eac5e73
    88 Ndbad13e1e54341d38d51d3e138fc63dc schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Earth Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Geology
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1045337 schema:issn 2045-2322
    97 schema:name Scientific Reports
    98 rdf:type schema:Periodical
    99 sg:person.014116435243.21 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
    100 schema:familyName Zhang
    101 schema:givenName Renhe
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014116435243.21
    103 rdf:type schema:Person
    104 sg:person.016064731601.54 schema:affiliation https://www.grid.ac/institutes/grid.260478.f
    105 schema:familyName Wang
    106 schema:givenName Huijun
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016064731601.54
    108 rdf:type schema:Person
    109 sg:person.016572431101.85 schema:affiliation https://www.grid.ac/institutes/grid.8658.3
    110 schema:familyName Su
    111 schema:givenName Jingzhi
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016572431101.85
    113 rdf:type schema:Person
    114 sg:pub.10.1007/s00382-012-1350-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023905729
    115 https://doi.org/10.1007/s00382-012-1350-z
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s00382-015-2715-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008197727
    118 https://doi.org/10.1007/s00382-015-2715-x
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s10584-011-0101-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052407476
    121 https://doi.org/10.1007/s10584-011-0101-1
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s10584-011-0121-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041089224
    124 https://doi.org/10.1007/s10584-011-0121-x
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s10712-011-9150-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017259888
    127 https://doi.org/10.1007/s10712-011-9150-2
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1038/nature09051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029118492
    130 https://doi.org/10.1038/nature09051
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1038/nature12534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005504219
    133 https://doi.org/10.1038/nature12534
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1038/nclimate1972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010217899
    136 https://doi.org/10.1038/nclimate1972
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1038/nclimate2145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042106860
    139 https://doi.org/10.1038/nclimate2145
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1038/nclimate2617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045736007
    142 https://doi.org/10.1038/nclimate2617
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1038/nclimate3082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016459736
    145 https://doi.org/10.1038/nclimate3082
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/ncomms11718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021744397
    148 https://doi.org/10.1038/ncomms11718
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1038/ngeo2399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022920192
    151 https://doi.org/10.1038/ngeo2399
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/ngeo2731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048074941
    154 https://doi.org/10.1038/ngeo2731
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/ngeo2751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013380816
    157 https://doi.org/10.1038/ngeo2751
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/ngeo338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024056336
    160 https://doi.org/10.1038/ngeo338
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1002/2014gl059520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021212552
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1029/2000jd000298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004644622
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1029/2001jd001143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024832582
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1029/2002jd002670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020320930
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1029/2005gl025244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053655267
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1029/2006gl025891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050991141
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1029/2006gl028044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021838118
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1029/2006jc003798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045108661
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1029/2008gl033631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001178954
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1029/2010rg000345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016459561
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1126/science.1182488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461277
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1126/science.aaa5632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031432406
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1126/science.aac9225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032680983
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1175/1520-0442(2002)015<2205:tabtio>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052657927
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1175/1520-0485(1990)020<0722:troago>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008180030
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1175/2016bamsstateoftheclimate.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053487201
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1175/bams-d-16-0183.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000862600
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1175/jcli-d-14-00471.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005812749
    197 rdf:type schema:CreativeWork
    198 https://www.grid.ac/institutes/grid.260478.f schema:alternateName Nanjing University of Information Science and Technology
    199 schema:name Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University for Information Science and Technology, Nanjing, 210044, China.
    200 rdf:type schema:Organization
    201 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
    202 schema:name Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, China.
    203 rdf:type schema:Organization
    204 https://www.grid.ac/institutes/grid.8658.3 schema:alternateName China Meteorological Administration
    205 schema:name State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China.
    206 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...