Differential Variance Analysis: a direct method to quantify and visualize dynamic heterogeneities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Raffaele Pastore, Giuseppe Pesce, Marco Caggioni

ABSTRACT

Many amorphous materials show spatially heterogenous dynamics, as different regions of the same system relax at different rates. Such a signature, known as Dynamic Heterogeneity, has been crucial to understand the nature of the jamming transition in simple model systems and is currently considered very promising to characterize more complex fluids of industrial and biological relevance. Unfortunately, measurements of dynamic heterogeneities typically require sophisticated experimental set-ups and are performed by few specialized groups. It is now possible to quantitatively characterize the relaxation process and the emergence of dynamic heterogeneities using a straightforward method, here validated on video microscopy data of hard-sphere colloidal glasses. We call this method Differential Variance Analysis (DVA), since it focuses on the variance of the differential frames, obtained subtracting images at different time-lags. Moreover, direct visualization of dynamic heterogeneities naturally appears in the differential frames, when the time-lag is set to the one corresponding to the maximum dynamic susceptibility. This approach opens the way to effectively characterize and tailor a wide variety of soft materials, from complex formulated products to biological tissues. More... »

PAGES

43496

References to SciGraph publications

  • 2006-08. Dynamic particle tracking reveals the ageing temperature of a colloidal glass in NATURE PHYSICS
  • 2015-10. Unjamming and cell shape in the asthmatic airway epithelium in NATURE MATERIALS
  • 2007-04. Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material in NATURE PHYSICS
  • 1986-03. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres in NATURE
  • 2006-04. The shapes of cooperatively rearranging regions in glass-forming liquids in NATURE PHYSICS
  • 1999-05. Growing range of correlated motion in a polymer melt on cooling towards the glass transition in NATURE
  • 2015-12. Dynamic phase coexistence in glass–forming liquids in SCIENTIFIC REPORTS
  • 2017-06-21. Elastically driven intermittent microscopic dynamics in soft solids in NATURE COMMUNICATIONS
  • 2014-12. Growing dynamical facilitation on approaching the random pinning colloidal glass transition in NATURE COMMUNICATIONS
  • 2008-07. Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition in NATURE PHYSICS
  • 2016-04-04. Anomalous dynamics of intruders in a crowded environment of mobile obstacles in NATURE COMMUNICATIONS
  • 2017-05. Endocytic reawakening of motility in jammed epithelia in NATURE MATERIALS
  • 2015-05. Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former in NATURE PHYSICS
  • 2007-04. Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light in NATURE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep43496

    DOI

    http://dx.doi.org/10.1038/srep43496

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084131426

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28290540


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Procter & Gamble (United States)", 
              "id": "https://www.grid.ac/institutes/grid.418758.7", 
              "name": [
                "CNR-SPIN, sezione di Napoli, Via Cintia, 80126 Napoli, Italy.", 
                "University of Cincinnati, UC Simulation Center, 2728 Vine Street, Cincinnati, OH 45219, USA.", 
                "Corporate Engineering, The Procter &Gamble Company, Cincinnati, 8256 Union Centre Blvd., West Chester, OH 45069, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pastore", 
            "givenName": "Raffaele", 
            "id": "sg:person.01170513712.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170513712.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Naples Federico II", 
              "id": "https://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Universit\u00e0 di Napoli \"Federico II\", Dipartimento di Fisica, Via Cintia, 80126 Napoli, Italy."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pesce", 
            "givenName": "Giuseppe", 
            "id": "sg:person.01056005171.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056005171.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Procter & Gamble (United States)", 
              "id": "https://www.grid.ac/institutes/grid.418758.7", 
              "name": [
                "Corporate Engineering, The Procter &Gamble Company, Cincinnati, 8256 Union Centre Blvd., West Chester, OH 45069, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Caggioni", 
            "givenName": "Marco", 
            "id": "sg:person.01010023250.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010023250.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/320340a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000082568", 
              "https://doi.org/10.1038/320340a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.065703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001418594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.065703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001418594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.physchem.58.032806.104653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001889901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.021306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004827375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.021306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004827375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005676221", 
              "https://doi.org/10.1038/nphys366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005676221", 
              "https://doi.org/10.1038/nphys366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4sm02147a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006695630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0901112106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008373017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/epl/i2006-10357-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012147054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012534581", 
              "https://doi.org/10.1038/nphys572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.185705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013828921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.185705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013828921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.physchem.040808.090405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014354681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014420915", 
              "https://doi.org/10.1038/ncomms11133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.085703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014532358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.085703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014532358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.83.587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015313243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.83.587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015313243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jcis.1996.0217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015476537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016190354", 
              "https://doi.org/10.1038/ncomms5685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016237891", 
              "https://doi.org/10.1038/nphys3289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.115701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016866401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.115701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016866401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2014.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018474805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-3093(00)00225-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018573428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.265701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018654881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.265701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018654881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/20406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018767702", 
              "https://doi.org/10.1038/20406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/20406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018767702", 
              "https://doi.org/10.1038/20406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021345963", 
              "https://doi.org/10.1038/nmat4357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024067160", 
              "https://doi.org/10.1038/nphys541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.physchem.51.1.99", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024468857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.84.021403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025752234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.84.021403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025752234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.190601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027319734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.190601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027319734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030024010", 
              "https://doi.org/10.1038/nphys1000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1010059108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030650357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5sm02576a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032382493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b918991b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032561409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b918991b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032561409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1501911112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033992238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.248301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034685277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.248301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034685277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cocis.2009.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035725162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/15394451003708549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035941271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.051404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035965958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.051404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035965958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep11770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041407514", 
              "https://doi.org/10.1038/srep11770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsb.2005.06.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049009340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5sm01568e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051736290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052042284", 
              "https://doi.org/10.1038/nphys261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052042284", 
              "https://doi.org/10.1038/nphys261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052042284", 
              "https://doi.org/10.1038/nphys261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physics.4.42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052405449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physics.4.42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052405449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1605094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057725011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2040-8978/16/8/083001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059180452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.188102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060753418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.188102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060753418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.085702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060754878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.085702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060754878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.218103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060759810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.218103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060759810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.097401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060760255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.097401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060760255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.068305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060765006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.068305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060765006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.5431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060821433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.5431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060821433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.078301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060834475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.078301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060834475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.49.435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.49.435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcse.2007.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061398157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.287.5453.627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062568167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218348x13500217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062975169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074249030", 
              "https://doi.org/10.1038/nmat4848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074249030", 
              "https://doi.org/10.1038/nmat4848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1607226113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083395319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086101679", 
              "https://doi.org/10.1038/ncomms15846"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "Many amorphous materials show spatially heterogenous dynamics, as different regions of the same system relax at different rates. Such a signature, known as Dynamic Heterogeneity, has been crucial to understand the nature of the jamming transition in simple model systems and is currently considered very promising to characterize more complex fluids of industrial and biological relevance. Unfortunately, measurements of dynamic heterogeneities typically require sophisticated experimental set-ups and are performed by few specialized groups. It is now possible to quantitatively characterize the relaxation process and the emergence of dynamic heterogeneities using a straightforward method, here validated on video microscopy data of hard-sphere colloidal glasses. We call this method Differential Variance Analysis (DVA), since it focuses on the variance of the differential frames, obtained subtracting images at different time-lags. Moreover, direct visualization of dynamic heterogeneities naturally appears in the differential frames, when the time-lag is set to the one corresponding to the maximum dynamic susceptibility. This approach opens the way to effectively characterize and tailor a wide variety of soft materials, from complex formulated products to biological tissues.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/srep43496", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Differential Variance Analysis: a direct method to quantify and visualize dynamic heterogeneities", 
        "pagination": "43496", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8739f00dd61ccb18541c085150724f900aab3125a7b82cfe6dd7009317c6e50f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28290540"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep43496"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084131426"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep43496", 
          "https://app.dimensions.ai/details/publication/pub.1084131426"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000552.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/srep/2017/170314/srep43496/full/srep43496.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep43496'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep43496'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep43496'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep43496'


     

    This table displays all metadata directly associated to this object as RDF triples.

    272 TRIPLES      21 PREDICATES      86 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep43496 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N8f6fe869a09344fcb632989bd0cfac1d
    4 schema:citation sg:pub.10.1038/20406
    5 sg:pub.10.1038/320340a0
    6 sg:pub.10.1038/ncomms11133
    7 sg:pub.10.1038/ncomms15846
    8 sg:pub.10.1038/ncomms5685
    9 sg:pub.10.1038/nmat4357
    10 sg:pub.10.1038/nmat4848
    11 sg:pub.10.1038/nphys1000
    12 sg:pub.10.1038/nphys261
    13 sg:pub.10.1038/nphys3289
    14 sg:pub.10.1038/nphys366
    15 sg:pub.10.1038/nphys541
    16 sg:pub.10.1038/nphys572
    17 sg:pub.10.1038/srep11770
    18 https://doi.org/10.1006/jcis.1996.0217
    19 https://doi.org/10.1016/j.cocis.2009.07.003
    20 https://doi.org/10.1016/j.jsb.2005.06.002
    21 https://doi.org/10.1016/j.physrep.2014.11.004
    22 https://doi.org/10.1016/s0022-3093(00)00225-8
    23 https://doi.org/10.1039/b918991b
    24 https://doi.org/10.1039/c4sm02147a
    25 https://doi.org/10.1039/c5sm01568e
    26 https://doi.org/10.1039/c5sm02576a
    27 https://doi.org/10.1063/1.1605094
    28 https://doi.org/10.1073/pnas.0901112106
    29 https://doi.org/10.1073/pnas.1010059108
    30 https://doi.org/10.1073/pnas.1501911112
    31 https://doi.org/10.1073/pnas.1607226113
    32 https://doi.org/10.1080/15394451003708549
    33 https://doi.org/10.1088/2040-8978/16/8/083001
    34 https://doi.org/10.1103/physics.4.42
    35 https://doi.org/10.1103/physreve.76.021306
    36 https://doi.org/10.1103/physreve.76.051404
    37 https://doi.org/10.1103/physreve.84.021403
    38 https://doi.org/10.1103/physrevlett.100.188102
    39 https://doi.org/10.1103/physrevlett.101.190601
    40 https://doi.org/10.1103/physrevlett.102.085702
    41 https://doi.org/10.1103/physrevlett.102.085703
    42 https://doi.org/10.1103/physrevlett.107.065703
    43 https://doi.org/10.1103/physrevlett.108.218103
    44 https://doi.org/10.1103/physrevlett.109.097401
    45 https://doi.org/10.1103/physrevlett.113.248301
    46 https://doi.org/10.1103/physrevlett.116.068305
    47 https://doi.org/10.1103/physrevlett.84.5431
    48 https://doi.org/10.1103/physrevlett.92.185705
    49 https://doi.org/10.1103/physrevlett.93.115701
    50 https://doi.org/10.1103/physrevlett.95.265701
    51 https://doi.org/10.1103/physrevlett.99.078301
    52 https://doi.org/10.1103/revmodphys.49.435
    53 https://doi.org/10.1103/revmodphys.83.587
    54 https://doi.org/10.1109/mcse.2007.53
    55 https://doi.org/10.1126/science.287.5453.627
    56 https://doi.org/10.1142/s0218348x13500217
    57 https://doi.org/10.1146/annurev.physchem.040808.090405
    58 https://doi.org/10.1146/annurev.physchem.51.1.99
    59 https://doi.org/10.1146/annurev.physchem.58.032806.104653
    60 https://doi.org/10.1209/epl/i2006-10357-4
    61 schema:datePublished 2017-12
    62 schema:datePublishedReg 2017-12-01
    63 schema:description Many amorphous materials show spatially heterogenous dynamics, as different regions of the same system relax at different rates. Such a signature, known as Dynamic Heterogeneity, has been crucial to understand the nature of the jamming transition in simple model systems and is currently considered very promising to characterize more complex fluids of industrial and biological relevance. Unfortunately, measurements of dynamic heterogeneities typically require sophisticated experimental set-ups and are performed by few specialized groups. It is now possible to quantitatively characterize the relaxation process and the emergence of dynamic heterogeneities using a straightforward method, here validated on video microscopy data of hard-sphere colloidal glasses. We call this method Differential Variance Analysis (DVA), since it focuses on the variance of the differential frames, obtained subtracting images at different time-lags. Moreover, direct visualization of dynamic heterogeneities naturally appears in the differential frames, when the time-lag is set to the one corresponding to the maximum dynamic susceptibility. This approach opens the way to effectively characterize and tailor a wide variety of soft materials, from complex formulated products to biological tissues.
    64 schema:genre research_article
    65 schema:inLanguage en
    66 schema:isAccessibleForFree true
    67 schema:isPartOf N7249b70f5ebd4cf58a126ed2cac101b8
    68 Ndb2efe6ce0d44353897aa44cddda9b56
    69 sg:journal.1045337
    70 schema:name Differential Variance Analysis: a direct method to quantify and visualize dynamic heterogeneities
    71 schema:pagination 43496
    72 schema:productId N4d85b11abb2144979262b76d527be415
    73 N727a687e61434a63b850032199a69979
    74 N941a680b37e5468a987bd0032ef296a2
    75 Nb046604e896e445b8fb3bdcc4855bb78
    76 Nde1ea78145fa4da8be393e4876a3dd91
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131426
    78 https://doi.org/10.1038/srep43496
    79 schema:sdDatePublished 2019-04-10T18:27
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N4b9d86977a3a44b9ab8f1eebcf91474e
    82 schema:url http://www.nature.com/srep/2017/170314/srep43496/full/srep43496.html
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N4b9d86977a3a44b9ab8f1eebcf91474e schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N4d85b11abb2144979262b76d527be415 schema:name nlm_unique_id
    89 schema:value 101563288
    90 rdf:type schema:PropertyValue
    91 N5b48c608ff324001bb53407d3d66e64f rdf:first sg:person.01010023250.08
    92 rdf:rest rdf:nil
    93 N7249b70f5ebd4cf58a126ed2cac101b8 schema:issueNumber 1
    94 rdf:type schema:PublicationIssue
    95 N727a687e61434a63b850032199a69979 schema:name readcube_id
    96 schema:value 8739f00dd61ccb18541c085150724f900aab3125a7b82cfe6dd7009317c6e50f
    97 rdf:type schema:PropertyValue
    98 N8f6fe869a09344fcb632989bd0cfac1d rdf:first sg:person.01170513712.34
    99 rdf:rest Nda3fda7a292f409fb6974c5c3adf72da
    100 N941a680b37e5468a987bd0032ef296a2 schema:name doi
    101 schema:value 10.1038/srep43496
    102 rdf:type schema:PropertyValue
    103 Nb046604e896e445b8fb3bdcc4855bb78 schema:name pubmed_id
    104 schema:value 28290540
    105 rdf:type schema:PropertyValue
    106 Nda3fda7a292f409fb6974c5c3adf72da rdf:first sg:person.01056005171.30
    107 rdf:rest N5b48c608ff324001bb53407d3d66e64f
    108 Ndb2efe6ce0d44353897aa44cddda9b56 schema:volumeNumber 7
    109 rdf:type schema:PublicationVolume
    110 Nde1ea78145fa4da8be393e4876a3dd91 schema:name dimensions_id
    111 schema:value pub.1084131426
    112 rdf:type schema:PropertyValue
    113 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Information and Computing Sciences
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Artificial Intelligence and Image Processing
    118 rdf:type schema:DefinedTerm
    119 sg:journal.1045337 schema:issn 2045-2322
    120 schema:name Scientific Reports
    121 rdf:type schema:Periodical
    122 sg:person.01010023250.08 schema:affiliation https://www.grid.ac/institutes/grid.418758.7
    123 schema:familyName Caggioni
    124 schema:givenName Marco
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010023250.08
    126 rdf:type schema:Person
    127 sg:person.01056005171.30 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
    128 schema:familyName Pesce
    129 schema:givenName Giuseppe
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056005171.30
    131 rdf:type schema:Person
    132 sg:person.01170513712.34 schema:affiliation https://www.grid.ac/institutes/grid.418758.7
    133 schema:familyName Pastore
    134 schema:givenName Raffaele
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170513712.34
    136 rdf:type schema:Person
    137 sg:pub.10.1038/20406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018767702
    138 https://doi.org/10.1038/20406
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/320340a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000082568
    141 https://doi.org/10.1038/320340a0
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/ncomms11133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014420915
    144 https://doi.org/10.1038/ncomms11133
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/ncomms15846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086101679
    147 https://doi.org/10.1038/ncomms15846
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/ncomms5685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016190354
    150 https://doi.org/10.1038/ncomms5685
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/nmat4357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021345963
    153 https://doi.org/10.1038/nmat4357
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/nmat4848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074249030
    156 https://doi.org/10.1038/nmat4848
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nphys1000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030024010
    159 https://doi.org/10.1038/nphys1000
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nphys261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052042284
    162 https://doi.org/10.1038/nphys261
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nphys3289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016237891
    165 https://doi.org/10.1038/nphys3289
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/nphys366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005676221
    168 https://doi.org/10.1038/nphys366
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/nphys541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024067160
    171 https://doi.org/10.1038/nphys541
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nphys572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012534581
    174 https://doi.org/10.1038/nphys572
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/srep11770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041407514
    177 https://doi.org/10.1038/srep11770
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1006/jcis.1996.0217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015476537
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.cocis.2009.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035725162
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.jsb.2005.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049009340
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.physrep.2014.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018474805
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/s0022-3093(00)00225-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018573428
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1039/b918991b schema:sameAs https://app.dimensions.ai/details/publication/pub.1032561409
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1039/c4sm02147a schema:sameAs https://app.dimensions.ai/details/publication/pub.1006695630
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1039/c5sm01568e schema:sameAs https://app.dimensions.ai/details/publication/pub.1051736290
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1039/c5sm02576a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032382493
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1063/1.1605094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057725011
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1073/pnas.0901112106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008373017
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1073/pnas.1010059108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030650357
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1073/pnas.1501911112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033992238
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1073/pnas.1607226113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083395319
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1080/15394451003708549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035941271
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1088/2040-8978/16/8/083001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059180452
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1103/physics.4.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052405449
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1103/physreve.76.021306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004827375
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1103/physreve.76.051404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035965958
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1103/physreve.84.021403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025752234
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1103/physrevlett.100.188102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753418
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1103/physrevlett.101.190601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027319734
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1103/physrevlett.102.085702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754878
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1103/physrevlett.102.085703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014532358
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1103/physrevlett.107.065703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001418594
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1103/physrevlett.108.218103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759810
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1103/physrevlett.109.097401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760255
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1103/physrevlett.113.248301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034685277
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1103/physrevlett.116.068305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765006
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1103/physrevlett.84.5431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821433
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1103/physrevlett.92.185705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013828921
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1103/physrevlett.93.115701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016866401
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1103/physrevlett.95.265701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018654881
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1103/physrevlett.99.078301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834475
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1103/revmodphys.49.435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838858
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1103/revmodphys.83.587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015313243
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1109/mcse.2007.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398157
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1126/science.287.5453.627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568167
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1142/s0218348x13500217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062975169
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1146/annurev.physchem.040808.090405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014354681
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1146/annurev.physchem.51.1.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024468857
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1146/annurev.physchem.58.032806.104653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001889901
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1209/epl/i2006-10357-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012147054
    264 rdf:type schema:CreativeWork
    265 https://www.grid.ac/institutes/grid.418758.7 schema:alternateName Procter & Gamble (United States)
    266 schema:name CNR-SPIN, sezione di Napoli, Via Cintia, 80126 Napoli, Italy.
    267 Corporate Engineering, The Procter &Gamble Company, Cincinnati, 8256 Union Centre Blvd., West Chester, OH 45069, USA.
    268 University of Cincinnati, UC Simulation Center, 2728 Vine Street, Cincinnati, OH 45219, USA.
    269 rdf:type schema:Organization
    270 https://www.grid.ac/institutes/grid.4691.a schema:alternateName University of Naples Federico II
    271 schema:name Università di Napoli "Federico II", Dipartimento di Fisica, Via Cintia, 80126 Napoli, Italy.
    272 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...