Spatio-Temporal Tolerance of Visuo-Tactile Illusions in Artificial Skin by Recurrent Neural Network with Spike-Timing-Dependent Plasticity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Alexandre Pitti, Ganna Pugach, Philippe Gaussier, Sotaro Shimada

ABSTRACT

Perceptual illusions across multiple modalities, such as the rubber-hand illusion, show how dynamic the brain is at adapting its body image and at determining what is part of it (the self) and what is not (others). Several research studies showed that redundancy and contingency among sensory signals are essential for perception of the illusion and that a lag of 200-300 ms is the critical limit of the brain to represent one's own body. In an experimental setup with an artificial skin, we replicate the visuo-tactile illusion within artificial neural networks. Our model is composed of an associative map and a recurrent map of spiking neurons that learn to predict the contingent activity across the visuo-tactile signals. Depending on the temporal delay incidentally added between the visuo-tactile signals or the spatial distance of two distinct stimuli, the two maps detect contingency differently. Spiking neurons organized into complex networks and synchrony detection at different temporal interval can well explain multisensory integration regarding self-body. More... »

PAGES

41056

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep41056

DOI

http://dx.doi.org/10.1038/srep41056

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053999022

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28106139


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Image", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Illusions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuronal Plasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Parietal Lobe", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Skin Physiological Phenomena", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "ETIS Laboratory, UMR CNRS 8051, University of Cergy-Pontoise, ENSEA, Cergy-Pontoise, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pitti", 
        "givenName": "Alexandre", 
        "id": "sg:person.01126532346.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126532346.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Donetsk National Technical University", 
          "id": "https://www.grid.ac/institutes/grid.445415.5", 
          "name": [
            "ETIS Laboratory, UMR CNRS 8051, University of Cergy-Pontoise, ENSEA, Cergy-Pontoise, France.", 
            "Energy and Metallurgy Department, Donetsk National Technical University, Krasnoarmeysk, Ukraine."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pugach", 
        "givenName": "Ganna", 
        "id": "sg:person.013007400243.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013007400243.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cergy-Pontoise University", 
          "id": "https://www.grid.ac/institutes/grid.7901.f", 
          "name": [
            "ETIS Laboratory, UMR CNRS 8051, University of Cergy-Pontoise, ENSEA, Cergy-Pontoise, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaussier", 
        "givenName": "Philippe", 
        "id": "sg:person.01041272554.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meiji University", 
          "id": "https://www.grid.ac/institutes/grid.411764.1", 
          "name": [
            "Dept. of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shimada", 
        "givenName": "Sotaro", 
        "id": "sg:person.0703731137.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703731137.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.10.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000425606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869026", 
          "https://doi.org/10.1038/81453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869026", 
          "https://doi.org/10.1038/81453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1012178108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003872829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0069474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004342177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.concog.2007.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004494530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhh053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004716067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2005.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005170714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2005.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005170714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(02)00041-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006339362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(02)00041-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006339362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0006185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007406389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1308459110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008207981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10339-004-0013-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008275530", 
          "https://doi.org/10.1007/s10339-004-0013-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009635558", 
          "https://doi.org/10.1007/bf00337288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2014.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009677157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2009.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010366405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(00)00053-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011812105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/jocn.2008.21168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011909641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2015.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012762239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.concog.2008.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017174393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2004.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017424859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-0102(01)00225-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018210009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(01)00083-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018333230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0140525x13002343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019067942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0140525x13002343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019067942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089892999563607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019625719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020572664", 
          "https://doi.org/10.1038/2245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020572664", 
          "https://doi.org/10.1038/2245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-5884.2006.00319.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022117705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0042-6989(02)00298-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022762455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0042-6989(02)00298-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022762455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0609523103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023449325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9822(03)00449-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024477584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9822(03)00449-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024477584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1363-13.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026755786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep27893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026859849", 
          "https://doi.org/10.1038/srep27893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.concog.2005.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027223819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027530642", 
          "https://doi.org/10.1038/35784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027530642", 
          "https://doi.org/10.1038/35784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858406293182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028082387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858406293182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028082387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002210050550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029477737", 
          "https://doi.org/10.1007/s002210050550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-6613(02)01907-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029485803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033178706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2015.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035071378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01691864.2015.1092395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036881553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797612441219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044392218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797612441219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044392218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.0800-05.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046868585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.3404-11.2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046948762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuropsychologia.2005.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052435442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuropsychologia.2005.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052435442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0954-898x_8_2_003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059116071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tamd.2009.2021506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061488110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1996.75.1.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082965869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1997.77.5.2268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083094322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.18-24-10464.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083361411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/humanoids.2012.6651535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093545881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/devlrn.2010.5578860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094022113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2016.7759519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095146666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/elnano.2013.6552033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095259823"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Perceptual illusions across multiple modalities, such as the rubber-hand illusion, show how dynamic the brain is at adapting its body image and at determining what is part of it (the self) and what is not (others). Several research studies showed that redundancy and contingency among sensory signals are essential for perception of the illusion and that a lag of 200-300\u2009ms is the critical limit of the brain to represent one's own body. In an experimental setup with an artificial skin, we replicate the visuo-tactile illusion within artificial neural networks. Our model is composed of an associative map and a recurrent map of spiking neurons that learn to predict the contingent activity across the visuo-tactile signals. Depending on the temporal delay incidentally added between the visuo-tactile signals or the spatial distance of two distinct stimuli, the two maps detect contingency differently. Spiking neurons organized into complex networks and synchrony detection at different temporal interval can well explain multisensory integration regarding self-body.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep41056", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Spatio-Temporal Tolerance of Visuo-Tactile Illusions in Artificial Skin by Recurrent Neural Network with Spike-Timing-Dependent Plasticity", 
    "pagination": "41056", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bbe2645a0745cf54682037af5f5276528d99647ab1a243a3edd8ab597e896d54"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28106139"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep41056"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053999022"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep41056", 
      "https://app.dimensions.ai/details/publication/pub.1053999022"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000568.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2017/170120/srep41056/full/srep41056.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep41056'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep41056'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep41056'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep41056'


 

This table displays all metadata directly associated to this object as RDF triples.

300 TRIPLES      21 PREDICATES      91 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep41056 schema:about N1c2f537d212242ce9176c693564318f2
2 N2c44fa312b544f56b99d93065ffd46b6
3 N521c1f4a0d434792acf57ee269fcfa31
4 N5f64453ea1aa4c7b8b04e68cc8407659
5 N6ffc53296715462e865ac7a5d9dd702d
6 Na2e10727a3a347788a70211d71047ab4
7 Na6c714404eef4cd784f08ea775a5509c
8 Nb90cb1068fb74d749d480d81c1b79469
9 Nbde5bba1bc314b27929b7d54cb023561
10 Ned6dfa6c6310494eafed9bcf0976e56b
11 anzsrc-for:17
12 anzsrc-for:1701
13 schema:author Na996d1b9ae454697b7f84e4da869f27f
14 schema:citation sg:pub.10.1007/bf00337288
15 sg:pub.10.1007/s002210050550
16 sg:pub.10.1007/s10339-004-0013-3
17 sg:pub.10.1038/2245
18 sg:pub.10.1038/30918
19 sg:pub.10.1038/35784
20 sg:pub.10.1038/81453
21 sg:pub.10.1038/srep27893
22 https://doi.org/10.1002/hbm.22770
23 https://doi.org/10.1016/j.concog.2005.09.004
24 https://doi.org/10.1016/j.concog.2007.07.007
25 https://doi.org/10.1016/j.concog.2008.03.004
26 https://doi.org/10.1016/j.neunet.2009.01.007
27 https://doi.org/10.1016/j.neunet.2014.08.009
28 https://doi.org/10.1016/j.neuroimage.2004.10.039
29 https://doi.org/10.1016/j.neuropsychologia.2005.09.009
30 https://doi.org/10.1016/j.tics.2004.09.005
31 https://doi.org/10.1016/j.tics.2005.08.007
32 https://doi.org/10.1016/j.tics.2015.03.001
33 https://doi.org/10.1016/j.tics.2015.06.012
34 https://doi.org/10.1016/s0042-6989(02)00298-5
35 https://doi.org/10.1016/s0168-0102(01)00225-5
36 https://doi.org/10.1016/s0893-6080(00)00053-8
37 https://doi.org/10.1016/s0893-6080(01)00083-1
38 https://doi.org/10.1016/s0960-9822(03)00449-4
39 https://doi.org/10.1016/s1053-8119(02)00041-1
40 https://doi.org/10.1016/s1364-6613(02)01907-1
41 https://doi.org/10.1017/s0140525x13002343
42 https://doi.org/10.1073/pnas.0609523103
43 https://doi.org/10.1073/pnas.1012178108
44 https://doi.org/10.1073/pnas.1308459110
45 https://doi.org/10.1080/01691864.2015.1092395
46 https://doi.org/10.1088/0954-898x_8_2_003
47 https://doi.org/10.1093/cercor/bhh053
48 https://doi.org/10.1109/devlrn.2010.5578860
49 https://doi.org/10.1109/elnano.2013.6552033
50 https://doi.org/10.1109/humanoids.2012.6651535
51 https://doi.org/10.1109/iros.2016.7759519
52 https://doi.org/10.1109/tamd.2009.2021506
53 https://doi.org/10.1111/j.1468-5884.2006.00319.x
54 https://doi.org/10.1152/jn.1996.75.1.439
55 https://doi.org/10.1152/jn.1997.77.5.2268
56 https://doi.org/10.1162/089892999563607
57 https://doi.org/10.1162/jocn.2008.21168
58 https://doi.org/10.1177/0956797612441219
59 https://doi.org/10.1177/1073858406293182
60 https://doi.org/10.1371/journal.pone.0006185
61 https://doi.org/10.1371/journal.pone.0069474
62 https://doi.org/10.1523/jneurosci.0800-05.2005
63 https://doi.org/10.1523/jneurosci.1363-13.2013
64 https://doi.org/10.1523/jneurosci.18-24-10464.1998
65 https://doi.org/10.1523/jneurosci.3404-11.2011
66 schema:datePublished 2017-12
67 schema:datePublishedReg 2017-12-01
68 schema:description Perceptual illusions across multiple modalities, such as the rubber-hand illusion, show how dynamic the brain is at adapting its body image and at determining what is part of it (the self) and what is not (others). Several research studies showed that redundancy and contingency among sensory signals are essential for perception of the illusion and that a lag of 200-300 ms is the critical limit of the brain to represent one's own body. In an experimental setup with an artificial skin, we replicate the visuo-tactile illusion within artificial neural networks. Our model is composed of an associative map and a recurrent map of spiking neurons that learn to predict the contingent activity across the visuo-tactile signals. Depending on the temporal delay incidentally added between the visuo-tactile signals or the spatial distance of two distinct stimuli, the two maps detect contingency differently. Spiking neurons organized into complex networks and synchrony detection at different temporal interval can well explain multisensory integration regarding self-body.
69 schema:genre research_article
70 schema:inLanguage en
71 schema:isAccessibleForFree true
72 schema:isPartOf N163ebc8baf1c40d6ace0dff9ac604fa6
73 N4a03fd3f7c1e44ababd7380920ac2df7
74 sg:journal.1045337
75 schema:name Spatio-Temporal Tolerance of Visuo-Tactile Illusions in Artificial Skin by Recurrent Neural Network with Spike-Timing-Dependent Plasticity
76 schema:pagination 41056
77 schema:productId N7344031d8de846e2b0267e98f1a43f22
78 Na2f5dcbae20d4138b58ceae7e4d5db18
79 Nac1deb78bf164689b8113359d65157b1
80 Nb012761461924583b899e9bda040546e
81 Ndaa2cab61edc40019ab84b81030ee826
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053999022
83 https://doi.org/10.1038/srep41056
84 schema:sdDatePublished 2019-04-10T20:55
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N1b9b19cf878b4e94896ad89121c52991
87 schema:url http://www.nature.com/srep/2017/170120/srep41056/full/srep41056.html
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0442e135d80642f3b1d7c15282a30e11 rdf:first sg:person.013007400243.07
92 rdf:rest Nf6a7bccd33a74e7f83da4aff3a4de196
93 N163ebc8baf1c40d6ace0dff9ac604fa6 schema:volumeNumber 7
94 rdf:type schema:PublicationVolume
95 N1b9b19cf878b4e94896ad89121c52991 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N1c2f537d212242ce9176c693564318f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Skin Physiological Phenomena
99 rdf:type schema:DefinedTerm
100 N2c44fa312b544f56b99d93065ffd46b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Body Image
102 rdf:type schema:DefinedTerm
103 N4a03fd3f7c1e44ababd7380920ac2df7 schema:issueNumber 1
104 rdf:type schema:PublicationIssue
105 N521c1f4a0d434792acf57ee269fcfa31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Models, Neurological
107 rdf:type schema:DefinedTerm
108 N5f64453ea1aa4c7b8b04e68cc8407659 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Neuronal Plasticity
110 rdf:type schema:DefinedTerm
111 N6ffc53296715462e865ac7a5d9dd702d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Humans
113 rdf:type schema:DefinedTerm
114 N7344031d8de846e2b0267e98f1a43f22 schema:name dimensions_id
115 schema:value pub.1053999022
116 rdf:type schema:PropertyValue
117 Na2e10727a3a347788a70211d71047ab4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Neural Networks (Computer)
119 rdf:type schema:DefinedTerm
120 Na2f5dcbae20d4138b58ceae7e4d5db18 schema:name pubmed_id
121 schema:value 28106139
122 rdf:type schema:PropertyValue
123 Na6c714404eef4cd784f08ea775a5509c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Action Potentials
125 rdf:type schema:DefinedTerm
126 Na996d1b9ae454697b7f84e4da869f27f rdf:first sg:person.01126532346.35
127 rdf:rest N0442e135d80642f3b1d7c15282a30e11
128 Nac1deb78bf164689b8113359d65157b1 schema:name doi
129 schema:value 10.1038/srep41056
130 rdf:type schema:PropertyValue
131 Nb012761461924583b899e9bda040546e schema:name readcube_id
132 schema:value bbe2645a0745cf54682037af5f5276528d99647ab1a243a3edd8ab597e896d54
133 rdf:type schema:PropertyValue
134 Nb90cb1068fb74d749d480d81c1b79469 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Illusions
136 rdf:type schema:DefinedTerm
137 Nbde5bba1bc314b27929b7d54cb023561 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Parietal Lobe
139 rdf:type schema:DefinedTerm
140 Nc9b797b8a3864edcabe13388f5891150 rdf:first sg:person.0703731137.87
141 rdf:rest rdf:nil
142 Ndaa2cab61edc40019ab84b81030ee826 schema:name nlm_unique_id
143 schema:value 101563288
144 rdf:type schema:PropertyValue
145 Ned6dfa6c6310494eafed9bcf0976e56b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Neurons
147 rdf:type schema:DefinedTerm
148 Nf6a7bccd33a74e7f83da4aff3a4de196 rdf:first sg:person.01041272554.05
149 rdf:rest Nc9b797b8a3864edcabe13388f5891150
150 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
151 schema:name Psychology and Cognitive Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
154 schema:name Psychology
155 rdf:type schema:DefinedTerm
156 sg:journal.1045337 schema:issn 2045-2322
157 schema:name Scientific Reports
158 rdf:type schema:Periodical
159 sg:person.01041272554.05 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
160 schema:familyName Gaussier
161 schema:givenName Philippe
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05
163 rdf:type schema:Person
164 sg:person.01126532346.35 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
165 schema:familyName Pitti
166 schema:givenName Alexandre
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126532346.35
168 rdf:type schema:Person
169 sg:person.013007400243.07 schema:affiliation https://www.grid.ac/institutes/grid.445415.5
170 schema:familyName Pugach
171 schema:givenName Ganna
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013007400243.07
173 rdf:type schema:Person
174 sg:person.0703731137.87 schema:affiliation https://www.grid.ac/institutes/grid.411764.1
175 schema:familyName Shimada
176 schema:givenName Sotaro
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703731137.87
178 rdf:type schema:Person
179 sg:pub.10.1007/bf00337288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009635558
180 https://doi.org/10.1007/bf00337288
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s002210050550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029477737
183 https://doi.org/10.1007/s002210050550
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s10339-004-0013-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008275530
186 https://doi.org/10.1007/s10339-004-0013-3
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/2245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020572664
189 https://doi.org/10.1038/2245
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
192 https://doi.org/10.1038/30918
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/35784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027530642
195 https://doi.org/10.1038/35784
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/81453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869026
198 https://doi.org/10.1038/81453
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/srep27893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026859849
201 https://doi.org/10.1038/srep27893
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/hbm.22770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033178706
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.concog.2005.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027223819
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.concog.2007.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004494530
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.concog.2008.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017174393
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.neunet.2009.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010366405
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.neunet.2014.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009677157
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.neuroimage.2004.10.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000425606
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.neuropsychologia.2005.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052435442
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.tics.2004.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017424859
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.tics.2005.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005170714
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.tics.2015.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035071378
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.tics.2015.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012762239
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/s0042-6989(02)00298-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022762455
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/s0168-0102(01)00225-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018210009
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/s0893-6080(00)00053-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011812105
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/s0893-6080(01)00083-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018333230
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/s0960-9822(03)00449-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024477584
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/s1053-8119(02)00041-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006339362
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s1364-6613(02)01907-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029485803
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1017/s0140525x13002343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019067942
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1073/pnas.0609523103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023449325
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1073/pnas.1012178108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003872829
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1073/pnas.1308459110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008207981
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1080/01691864.2015.1092395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036881553
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1088/0954-898x_8_2_003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059116071
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/cercor/bhh053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004716067
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1109/devlrn.2010.5578860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094022113
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1109/elnano.2013.6552033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095259823
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1109/humanoids.2012.6651535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093545881
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1109/iros.2016.7759519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095146666
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1109/tamd.2009.2021506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061488110
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1111/j.1468-5884.2006.00319.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022117705
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1152/jn.1996.75.1.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082965869
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1152/jn.1997.77.5.2268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083094322
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1162/089892999563607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019625719
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1162/jocn.2008.21168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011909641
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1177/0956797612441219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044392218
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1177/1073858406293182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028082387
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1371/journal.pone.0006185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007406389
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1371/journal.pone.0069474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004342177
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1523/jneurosci.0800-05.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046868585
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1523/jneurosci.1363-13.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026755786
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1523/jneurosci.18-24-10464.1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083361411
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1523/jneurosci.3404-11.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046948762
290 rdf:type schema:CreativeWork
291 https://www.grid.ac/institutes/grid.411764.1 schema:alternateName Meiji University
292 schema:name Dept. of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan.
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.445415.5 schema:alternateName Donetsk National Technical University
295 schema:name ETIS Laboratory, UMR CNRS 8051, University of Cergy-Pontoise, ENSEA, Cergy-Pontoise, France.
296 Energy and Metallurgy Department, Donetsk National Technical University, Krasnoarmeysk, Ukraine.
297 rdf:type schema:Organization
298 https://www.grid.ac/institutes/grid.7901.f schema:alternateName Cergy-Pontoise University
299 schema:name ETIS Laboratory, UMR CNRS 8051, University of Cergy-Pontoise, ENSEA, Cergy-Pontoise, France.
300 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...