Modeling confirmation bias and polarization View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Michela Del Vicario, Antonio Scala, Guido Caldarelli, H Eugene Stanley, Walter Quattrociocchi

ABSTRACT

Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting information. Confirmation bias, indeed, plays a pivotal role in viral phenomena. Furthermore, the wide availability of content on the web fosters the aggregation of likeminded people where debates tend to enforce group polarization. Such a configuration might alter the public debate and thus the formation of the public opinion. In this paper we provide a mathematical model to study online social debates and the related polarization dynamics. We assume the basic updating rule of the Bounded Confidence Model (BCM) and we develop two variations a) the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence is reached; and b) the Unbounded Confidence Model, under which the interaction among discordant pairs of users is allowed even with a negative feedback, either with the rewiring step (RUCM) or without it (UCM). From numerical simulations we find that the new models (UCM and RUCM), unlike the BCM, are able to explain the coexistence of two stable final opinions, often observed in reality. Lastly, we present a mean field approximation of the newly introduced models. More... »

PAGES

40391

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep40391

DOI

http://dx.doi.org/10.1038/srep40391

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010233779

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28074874


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratory of Computational Social Science, Networks Dept, IMT School for Advanced Studies, 55100 Lucca, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Del Vicario", 
        "givenName": "Michela", 
        "id": "sg:person.07510177117.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07510177117.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Computational Social Science, Networks Dept, IMT School for Advanced Studies, 55100 Lucca, Italy.", 
            "ISC-CNR Uos \"Sapienza\", 00185 Roma, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scala", 
        "givenName": "Antonio", 
        "id": "sg:person.01061254536.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061254536.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Computational Social Science, Networks Dept, IMT School for Advanced Studies, 55100 Lucca, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caldarelli", 
        "givenName": "Guido", 
        "id": "sg:person.01361040750.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361040750.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Boston University, Center for Polymer Studies, Department of Physics, Boston, Massachusetts 02215, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stanley", 
        "givenName": "H Eugene", 
        "id": "sg:person.0767651144.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767651144.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Computational Social Science, Networks Dept, IMT School for Advanced Studies, 55100 Lucca, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quattrociocchi", 
        "givenName": "Walter", 
        "id": "sg:person.0746036256.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746036256.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(03)00171-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011915176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(03)00171-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011915176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.r5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016679854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.r5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016679854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22200-9_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018487768", 
          "https://doi.org/10.1007/978-3-642-22200-9_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22200-9_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018487768", 
          "https://doi.org/10.1007/978-3-642-22200-9_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0118093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019417333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/82/18007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025372167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9760.00148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029188181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.238701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033591107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.238701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033591107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035501078", 
          "https://doi.org/10.1038/srep10032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep31834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038047418", 
          "https://doi.org/10.1038/srep31834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.066101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041467402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.066101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041467402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/1089-2680.2.2.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042172916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1418838112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042712322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176996306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043770744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044429526", 
          "https://doi.org/10.1038/nphys2819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0138740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045863191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046837900", 
          "https://doi.org/10.1038/srep04938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2740908.2745939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048085526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1517441113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049599362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1185231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050306231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.018701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.018701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183100000936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062903778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183107011789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062904848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183108012297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062904897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219525900000078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062998109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1024404276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064403144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0181821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090877940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.2795110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101735869"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting information. Confirmation bias, indeed, plays a pivotal role in viral phenomena. Furthermore, the wide availability of content on the web fosters the aggregation of likeminded people where debates tend to enforce group polarization. Such a configuration might alter the public debate and thus the formation of the public opinion. In this paper we provide a mathematical model to study online social debates and the related polarization dynamics. We assume the basic updating rule of the Bounded Confidence Model (BCM) and we develop two variations a) the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence is reached; and b) the Unbounded Confidence Model, under which the interaction among discordant pairs of users is allowed even with a negative feedback, either with the rewiring step (RUCM) or without it (UCM). From numerical simulations we find that the new models (UCM and RUCM), unlike the BCM, are able to explain the coexistence of two stable final opinions, often observed in reality. Lastly, we present a mean field approximation of the newly introduced models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep40391", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3791124", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3791120", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Modeling confirmation bias and polarization", 
    "pagination": "40391", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "30c10b9f8f872471d45479bdcf35b5cc2b266396ccb589f5dd4f62c6935d8e46"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28074874"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep40391"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010233779"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep40391", 
      "https://app.dimensions.ai/details/publication/pub.1010233779"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000568.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2017/170111/srep40391/full/srep40391.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep40391'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep40391'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep40391'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep40391'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      64 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep40391 schema:about N2ec30af129864315a97b7d4bda9e679e
2 N48eb85f0dd2044bf8c450cff2325dc50
3 N8f94eedd24cd480fa46bcdf89babca3f
4 Na17c50cc070a4b8a825adffef7a8388d
5 Nc02a80bba1fa409f8e92cfcba9ae1775
6 anzsrc-for:17
7 anzsrc-for:1701
8 schema:author N5632d8c949ff4b8bb77ed3235edfed64
9 schema:citation sg:pub.10.1007/978-3-642-22200-9_25
10 sg:pub.10.1038/30918
11 sg:pub.10.1038/nphys2819
12 sg:pub.10.1038/srep04938
13 sg:pub.10.1038/srep10032
14 sg:pub.10.1038/srep31834
15 https://doi.org/10.1016/s0167-2789(03)00171-4
16 https://doi.org/10.1037/1089-2680.2.2.175
17 https://doi.org/10.1073/pnas.1418838112
18 https://doi.org/10.1073/pnas.1517441113
19 https://doi.org/10.1103/physreve.61.r5
20 https://doi.org/10.1103/physreve.84.066101
21 https://doi.org/10.1103/physrevlett.103.018701
22 https://doi.org/10.1103/physrevlett.90.238701
23 https://doi.org/10.1103/revmodphys.81.591
24 https://doi.org/10.1111/1467-9760.00148
25 https://doi.org/10.1126/science.1185231
26 https://doi.org/10.1126/science.286.5439.509
27 https://doi.org/10.1142/s0129183100000936
28 https://doi.org/10.1142/s0129183107011789
29 https://doi.org/10.1142/s0129183108012297
30 https://doi.org/10.1142/s0219525900000078
31 https://doi.org/10.1145/2740908.2745939
32 https://doi.org/10.1209/0295-5075/82/18007
33 https://doi.org/10.1214/aop/1024404276
34 https://doi.org/10.1214/aop/1176996306
35 https://doi.org/10.1371/journal.pone.0118093
36 https://doi.org/10.1371/journal.pone.0138740
37 https://doi.org/10.1371/journal.pone.0181821
38 https://doi.org/10.2139/ssrn.2795110
39 schema:datePublished 2017-12
40 schema:datePublishedReg 2017-12-01
41 schema:description Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting information. Confirmation bias, indeed, plays a pivotal role in viral phenomena. Furthermore, the wide availability of content on the web fosters the aggregation of likeminded people where debates tend to enforce group polarization. Such a configuration might alter the public debate and thus the formation of the public opinion. In this paper we provide a mathematical model to study online social debates and the related polarization dynamics. We assume the basic updating rule of the Bounded Confidence Model (BCM) and we develop two variations a) the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence is reached; and b) the Unbounded Confidence Model, under which the interaction among discordant pairs of users is allowed even with a negative feedback, either with the rewiring step (RUCM) or without it (UCM). From numerical simulations we find that the new models (UCM and RUCM), unlike the BCM, are able to explain the coexistence of two stable final opinions, often observed in reality. Lastly, we present a mean field approximation of the newly introduced models.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N1135e5763c214ce9b05dbcaa77d8e1d3
46 Nd23fbad742d44f84985abb6c24a0eb9c
47 sg:journal.1045337
48 schema:name Modeling confirmation bias and polarization
49 schema:pagination 40391
50 schema:productId N22fbd532bb54401dbd10e620a8c2cdf9
51 N72198a2bbfb045d5a4cbc25163830aa3
52 Nbdb7ffb3c5414118bf53ac0455275194
53 Nc092ae0cf32c48e0b3e9e2e722bb5f46
54 Ndead657fcb5542f297fc2809347ea411
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010233779
56 https://doi.org/10.1038/srep40391
57 schema:sdDatePublished 2019-04-10T23:34
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N575e164152ee4bbb81a16ebac270fb48
60 schema:url http://www.nature.com/srep/2017/170111/srep40391/full/srep40391.html
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N00030e0e3f7f4f409ae159329463c645 rdf:first sg:person.0746036256.71
65 rdf:rest rdf:nil
66 N1135e5763c214ce9b05dbcaa77d8e1d3 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N1ce3ab5b8b554d89a8450038dbc3c1e6 schema:name ISC-CNR Uos "Sapienza", 00185 Roma, Italy.
69 Laboratory of Computational Social Science, Networks Dept, IMT School for Advanced Studies, 55100 Lucca, Italy.
70 rdf:type schema:Organization
71 N22fbd532bb54401dbd10e620a8c2cdf9 schema:name pubmed_id
72 schema:value 28074874
73 rdf:type schema:PropertyValue
74 N2bee79f613554ba69dcfbfb7f7e86f2e rdf:first sg:person.01361040750.65
75 rdf:rest N4db23f08fa2944c8ae930116dcd1173e
76 N2d9c6252161d4558b45a83a7ac30a84e schema:name Laboratory of Computational Social Science, Networks Dept, IMT School for Advanced Studies, 55100 Lucca, Italy.
77 rdf:type schema:Organization
78 N2ec30af129864315a97b7d4bda9e679e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Monte Carlo Method
80 rdf:type schema:DefinedTerm
81 N48eb85f0dd2044bf8c450cff2325dc50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Probability
83 rdf:type schema:DefinedTerm
84 N4c042f7a0d0841a3878209e76dfac249 schema:name Laboratory of Computational Social Science, Networks Dept, IMT School for Advanced Studies, 55100 Lucca, Italy.
85 rdf:type schema:Organization
86 N4db23f08fa2944c8ae930116dcd1173e rdf:first sg:person.0767651144.84
87 rdf:rest N00030e0e3f7f4f409ae159329463c645
88 N54c886d3c3f148299c36065d1fa116a0 rdf:first sg:person.01061254536.75
89 rdf:rest N2bee79f613554ba69dcfbfb7f7e86f2e
90 N5632d8c949ff4b8bb77ed3235edfed64 rdf:first sg:person.07510177117.31
91 rdf:rest N54c886d3c3f148299c36065d1fa116a0
92 N575e164152ee4bbb81a16ebac270fb48 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N72198a2bbfb045d5a4cbc25163830aa3 schema:name readcube_id
95 schema:value 30c10b9f8f872471d45479bdcf35b5cc2b266396ccb589f5dd4f62c6935d8e46
96 rdf:type schema:PropertyValue
97 N8f94eedd24cd480fa46bcdf89babca3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Models, Theoretical
99 rdf:type schema:DefinedTerm
100 Na17c50cc070a4b8a825adffef7a8388d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Bias
102 rdf:type schema:DefinedTerm
103 Nbdb7ffb3c5414118bf53ac0455275194 schema:name doi
104 schema:value 10.1038/srep40391
105 rdf:type schema:PropertyValue
106 Nc02a80bba1fa409f8e92cfcba9ae1775 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Computer Simulation
108 rdf:type schema:DefinedTerm
109 Nc092ae0cf32c48e0b3e9e2e722bb5f46 schema:name nlm_unique_id
110 schema:value 101563288
111 rdf:type schema:PropertyValue
112 Nd23fbad742d44f84985abb6c24a0eb9c schema:volumeNumber 7
113 rdf:type schema:PublicationVolume
114 Ndead657fcb5542f297fc2809347ea411 schema:name dimensions_id
115 schema:value pub.1010233779
116 rdf:type schema:PropertyValue
117 Ne3b4c95eacce464ab52b23e3d1fcb0d2 schema:name Laboratory of Computational Social Science, Networks Dept, IMT School for Advanced Studies, 55100 Lucca, Italy.
118 rdf:type schema:Organization
119 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
120 schema:name Psychology and Cognitive Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
123 schema:name Psychology
124 rdf:type schema:DefinedTerm
125 sg:grant.3791120 http://pending.schema.org/fundedItem sg:pub.10.1038/srep40391
126 rdf:type schema:MonetaryGrant
127 sg:grant.3791124 http://pending.schema.org/fundedItem sg:pub.10.1038/srep40391
128 rdf:type schema:MonetaryGrant
129 sg:journal.1045337 schema:issn 2045-2322
130 schema:name Scientific Reports
131 rdf:type schema:Periodical
132 sg:person.01061254536.75 schema:affiliation N1ce3ab5b8b554d89a8450038dbc3c1e6
133 schema:familyName Scala
134 schema:givenName Antonio
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061254536.75
136 rdf:type schema:Person
137 sg:person.01361040750.65 schema:affiliation N4c042f7a0d0841a3878209e76dfac249
138 schema:familyName Caldarelli
139 schema:givenName Guido
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361040750.65
141 rdf:type schema:Person
142 sg:person.0746036256.71 schema:affiliation Ne3b4c95eacce464ab52b23e3d1fcb0d2
143 schema:familyName Quattrociocchi
144 schema:givenName Walter
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746036256.71
146 rdf:type schema:Person
147 sg:person.07510177117.31 schema:affiliation N2d9c6252161d4558b45a83a7ac30a84e
148 schema:familyName Del Vicario
149 schema:givenName Michela
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07510177117.31
151 rdf:type schema:Person
152 sg:person.0767651144.84 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
153 schema:familyName Stanley
154 schema:givenName H Eugene
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767651144.84
156 rdf:type schema:Person
157 sg:pub.10.1007/978-3-642-22200-9_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018487768
158 https://doi.org/10.1007/978-3-642-22200-9_25
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
161 https://doi.org/10.1038/30918
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nphys2819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044429526
164 https://doi.org/10.1038/nphys2819
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/srep04938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046837900
167 https://doi.org/10.1038/srep04938
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/srep10032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035501078
170 https://doi.org/10.1038/srep10032
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/srep31834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038047418
173 https://doi.org/10.1038/srep31834
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0167-2789(03)00171-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011915176
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1037/1089-2680.2.2.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042172916
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1073/pnas.1418838112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042712322
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1073/pnas.1517441113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049599362
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physreve.61.r5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016679854
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physreve.84.066101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041467402
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.103.018701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755635
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.90.238701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033591107
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/revmodphys.81.591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839683
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1111/1467-9760.00148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029188181
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.1185231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050306231
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1142/s0129183100000936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062903778
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1142/s0129183107011789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062904848
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1142/s0129183108012297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062904897
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1142/s0219525900000078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062998109
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1145/2740908.2745939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048085526
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1209/0295-5075/82/18007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025372167
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1214/aop/1024404276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064403144
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1214/aop/1176996306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043770744
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1371/journal.pone.0118093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019417333
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1371/journal.pone.0138740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045863191
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1371/journal.pone.0181821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090877940
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2139/ssrn.2795110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101735869
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
224 schema:name Boston University, Center for Polymer Studies, Department of Physics, Boston, Massachusetts 02215, USA.
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...