The in vivo efficacy of neuraminidase inhibitors cannot be determined from the decay rates of influenza viral titers observed in ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01-09

AUTHORS

John Palmer, Hana M. Dobrovolny, Catherine A. A. Beauchemin

ABSTRACT

Antiviral therapy is a first line of defence against new influenza strains. Current pandemic preparations involve stock- piling oseltamivir, an oral neuraminidase inhibitor (NAI), so rapidly determining the effectiveness of NAIs against new viral strains is vital for deciding how to use the stockpile. Previous studies have shown that it is possible to extract the drug efficacy of antivirals from the viral decay rate of chronic infections. In the present work, we use a nonlinear mathematical model representing the course of an influenza infection to explore the possibility of extracting NAI drug efficacy using only the observed viral titer decay rates seen in patients. We first show that the effect of a time-varying antiviral concentration can be accurately approximated by a constant efficacy. We derive a relationship relating the true treatment dose and time elapsed between doses to the constant drug dose required to approximate the time- varying dose. Unfortunately, even with the simplification of a constant drug efficacy, we show that the viral decay rate depends not just on drug efficacy, but also on several viral infection parameters, such as infection and production rate, so that it is not possible to extract drug efficacy from viral decay rate alone. More... »

PAGES

40210

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep40210

DOI

http://dx.doi.org/10.1038/srep40210

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007458189

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28067324


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antiviral Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Enzyme Inhibitors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Influenza, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuraminidase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oseltamivir", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Viral Load", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Ryerson University, Toronto, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.68312.3e", 
          "name": [
            "Department of Physics, Ryerson University, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palmer", 
        "givenName": "John", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.264766.7", 
          "name": [
            "Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dobrovolny", 
        "givenName": "Hana M.", 
        "id": "sg:person.01127133006.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127133006.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Interdisciplinary Theoretical Science (iTHES) Research Group at RIKEN, Wako, Japan", 
          "id": "http://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Department of Physics, Ryerson University, Toronto, ON, Canada", 
            "Interdisciplinary Theoretical Science (iTHES) Research Group at RIKEN, Wako, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beauchemin", 
        "givenName": "Catherine A. A.", 
        "id": "sg:person.01273325013.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273325013.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00430-011-0206-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033255511", 
          "https://doi.org/10.1007/s00430-011-0206-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-009-0281-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015603929", 
          "https://doi.org/10.1007/s00285-009-0281-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00003088-198106060-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024854213", 
          "https://doi.org/10.2165/00003088-198106060-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00003088-199937060-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013722712", 
          "https://doi.org/10.2165/00003088-199937060-00003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-016-1383-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011063382", 
          "https://doi.org/10.1186/s12879-016-1383-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/11534730-000000000-00000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003074611", 
          "https://doi.org/10.2165/11534730-000000000-00000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-11-s1-s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014564384", 
          "https://doi.org/10.1186/1471-2458-11-s1-s10"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-09", 
    "datePublishedReg": "2017-01-09", 
    "description": "Antiviral therapy is a first line of defence against new influenza strains. Current pandemic preparations involve stock- piling oseltamivir, an oral neuraminidase inhibitor (NAI), so rapidly determining the effectiveness of NAIs against new viral strains is vital for deciding how to use the stockpile. Previous studies have shown that it is possible to extract the drug efficacy of antivirals from the viral decay rate of chronic infections. In the present work, we use a nonlinear mathematical model representing the course of an influenza infection to explore the possibility of extracting NAI drug efficacy using only the observed viral titer decay rates seen in patients. We first show that the effect of a time-varying antiviral concentration can be accurately approximated by a constant efficacy. We derive a relationship relating the true treatment dose and time elapsed between doses to the constant drug dose required to approximate the time- varying dose. Unfortunately, even with the simplification of a constant drug efficacy, we show that the viral decay rate depends not just on drug efficacy, but also on several viral infection parameters, such as infection and production rate, so that it is not possible to extract drug efficacy from viral decay rate alone.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep40210", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3929289", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "neuraminidase inhibitors", 
      "drug efficacy", 
      "effectiveness of NAIs", 
      "viral decay rates", 
      "oral neuraminidase inhibitor", 
      "influenza viral titer", 
      "new influenza strains", 
      "constant drug dose", 
      "new viral strains", 
      "antiviral concentrations", 
      "antiviral therapy", 
      "influenza infection", 
      "chronic infection", 
      "influenza strains", 
      "treatment dose", 
      "drug dose", 
      "vivo efficacy", 
      "viral titers", 
      "viral strains", 
      "first line", 
      "infection", 
      "efficacy", 
      "pandemic preparation", 
      "dose", 
      "patients", 
      "infection parameters", 
      "inhibitors", 
      "constant efficacy", 
      "previous studies", 
      "oseltamivir", 
      "therapy", 
      "antivirals", 
      "doses", 
      "titers", 
      "rate", 
      "strains", 
      "course", 
      "study", 
      "effect", 
      "defense", 
      "concentration", 
      "lines", 
      "relationship", 
      "effectiveness", 
      "time", 
      "preparation", 
      "possibility", 
      "model", 
      "present work", 
      "parameters", 
      "stockpiles", 
      "production rate", 
      "work", 
      "decay rate", 
      "mathematical model", 
      "simplification", 
      "nonlinear mathematical model"
    ], 
    "name": "The in vivo efficacy of neuraminidase inhibitors cannot be determined from the decay rates of influenza viral titers observed in treated patients", 
    "pagination": "40210", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007458189"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep40210"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28067324"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep40210", 
      "https://app.dimensions.ai/details/publication/pub.1007458189"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_738.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep40210"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep40210'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep40210'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep40210'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep40210'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      22 PREDICATES      100 URIs      85 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep40210 schema:about N14526a88b95a4a719d704330f092c425
2 N16f3625187ae4e398bcea970e8295244
3 N1c60a113bccf45248ec4138f9f7926f0
4 N4633a08f9c6a4e1ca2bd19637b2b99f5
5 N6372a210c8f14e2c93414832825b419d
6 N84c199600e5e46f99145d0ed62bad07d
7 N940cae0996054690bbebb77ece4ab742
8 N996d09c1ff0d4994944e8e5b1f43ae7e
9 Nd793251888474e6e9ad94205f3c10ca0
10 Nf1876f35f8504db09d8798a3534dda1b
11 anzsrc-for:11
12 anzsrc-for:1108
13 schema:author N55d7b1460cf14ae590be8c860914026b
14 schema:citation sg:pub.10.1007/s00285-009-0281-8
15 sg:pub.10.1007/s00430-011-0206-1
16 sg:pub.10.1186/1471-2458-11-s1-s10
17 sg:pub.10.1186/s12879-016-1383-8
18 sg:pub.10.2165/00003088-198106060-00002
19 sg:pub.10.2165/00003088-199937060-00003
20 sg:pub.10.2165/11534730-000000000-00000
21 schema:datePublished 2017-01-09
22 schema:datePublishedReg 2017-01-09
23 schema:description Antiviral therapy is a first line of defence against new influenza strains. Current pandemic preparations involve stock- piling oseltamivir, an oral neuraminidase inhibitor (NAI), so rapidly determining the effectiveness of NAIs against new viral strains is vital for deciding how to use the stockpile. Previous studies have shown that it is possible to extract the drug efficacy of antivirals from the viral decay rate of chronic infections. In the present work, we use a nonlinear mathematical model representing the course of an influenza infection to explore the possibility of extracting NAI drug efficacy using only the observed viral titer decay rates seen in patients. We first show that the effect of a time-varying antiviral concentration can be accurately approximated by a constant efficacy. We derive a relationship relating the true treatment dose and time elapsed between doses to the constant drug dose required to approximate the time- varying dose. Unfortunately, even with the simplification of a constant drug efficacy, we show that the viral decay rate depends not just on drug efficacy, but also on several viral infection parameters, such as infection and production rate, so that it is not possible to extract drug efficacy from viral decay rate alone.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N5bc68d29d8c54c44aabc6df8e1e6af93
28 N860bcdec918144b686c089469acaade9
29 sg:journal.1045337
30 schema:keywords antiviral concentrations
31 antiviral therapy
32 antivirals
33 chronic infection
34 concentration
35 constant drug dose
36 constant efficacy
37 course
38 decay rate
39 defense
40 dose
41 doses
42 drug dose
43 drug efficacy
44 effect
45 effectiveness
46 effectiveness of NAIs
47 efficacy
48 first line
49 infection
50 infection parameters
51 influenza infection
52 influenza strains
53 influenza viral titer
54 inhibitors
55 lines
56 mathematical model
57 model
58 neuraminidase inhibitors
59 new influenza strains
60 new viral strains
61 nonlinear mathematical model
62 oral neuraminidase inhibitor
63 oseltamivir
64 pandemic preparation
65 parameters
66 patients
67 possibility
68 preparation
69 present work
70 previous studies
71 production rate
72 rate
73 relationship
74 simplification
75 stockpiles
76 strains
77 study
78 therapy
79 time
80 titers
81 treatment dose
82 viral decay rates
83 viral strains
84 viral titers
85 vivo efficacy
86 work
87 schema:name The in vivo efficacy of neuraminidase inhibitors cannot be determined from the decay rates of influenza viral titers observed in treated patients
88 schema:pagination 40210
89 schema:productId N052fea4fbced4b77be27093682d48e26
90 N6c68d24ff0d446b78e5153c521fb624f
91 Na2c77ac490074ead80d76795d3b143a9
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007458189
93 https://doi.org/10.1038/srep40210
94 schema:sdDatePublished 2022-05-20T07:33
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N8dcb1d91a728465d8daf3cde38d72db7
97 schema:url https://doi.org/10.1038/srep40210
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N052fea4fbced4b77be27093682d48e26 schema:name doi
102 schema:value 10.1038/srep40210
103 rdf:type schema:PropertyValue
104 N0bba43a0f02a4ac3b63157ea951bae6c schema:affiliation grid-institutes:grid.68312.3e
105 schema:familyName Palmer
106 schema:givenName John
107 rdf:type schema:Person
108 N14526a88b95a4a719d704330f092c425 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Viral Load
110 rdf:type schema:DefinedTerm
111 N16f3625187ae4e398bcea970e8295244 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Neuraminidase
113 rdf:type schema:DefinedTerm
114 N1c60a113bccf45248ec4138f9f7926f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Influenza, Human
116 rdf:type schema:DefinedTerm
117 N4633a08f9c6a4e1ca2bd19637b2b99f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Models, Theoretical
119 rdf:type schema:DefinedTerm
120 N55d7b1460cf14ae590be8c860914026b rdf:first N0bba43a0f02a4ac3b63157ea951bae6c
121 rdf:rest N5b344cfe8560452d8640b00e1df8de55
122 N5b344cfe8560452d8640b00e1df8de55 rdf:first sg:person.01127133006.54
123 rdf:rest N6a11ffc90c91450d848502ef88848c12
124 N5bc68d29d8c54c44aabc6df8e1e6af93 schema:volumeNumber 7
125 rdf:type schema:PublicationVolume
126 N6372a210c8f14e2c93414832825b419d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Humans
128 rdf:type schema:DefinedTerm
129 N6a11ffc90c91450d848502ef88848c12 rdf:first sg:person.01273325013.63
130 rdf:rest rdf:nil
131 N6c68d24ff0d446b78e5153c521fb624f schema:name pubmed_id
132 schema:value 28067324
133 rdf:type schema:PropertyValue
134 N84c199600e5e46f99145d0ed62bad07d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Enzyme Inhibitors
136 rdf:type schema:DefinedTerm
137 N860bcdec918144b686c089469acaade9 schema:issueNumber 1
138 rdf:type schema:PublicationIssue
139 N8dcb1d91a728465d8daf3cde38d72db7 schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 N940cae0996054690bbebb77ece4ab742 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Treatment Outcome
143 rdf:type schema:DefinedTerm
144 N996d09c1ff0d4994944e8e5b1f43ae7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Oseltamivir
146 rdf:type schema:DefinedTerm
147 Na2c77ac490074ead80d76795d3b143a9 schema:name dimensions_id
148 schema:value pub.1007458189
149 rdf:type schema:PropertyValue
150 Nd793251888474e6e9ad94205f3c10ca0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Models, Biological
152 rdf:type schema:DefinedTerm
153 Nf1876f35f8504db09d8798a3534dda1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Antiviral Agents
155 rdf:type schema:DefinedTerm
156 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
157 schema:name Medical and Health Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
160 schema:name Medical Microbiology
161 rdf:type schema:DefinedTerm
162 sg:grant.3929289 http://pending.schema.org/fundedItem sg:pub.10.1038/srep40210
163 rdf:type schema:MonetaryGrant
164 sg:journal.1045337 schema:issn 2045-2322
165 schema:name Scientific Reports
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.01127133006.54 schema:affiliation grid-institutes:grid.264766.7
169 schema:familyName Dobrovolny
170 schema:givenName Hana M.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127133006.54
172 rdf:type schema:Person
173 sg:person.01273325013.63 schema:affiliation grid-institutes:grid.7597.c
174 schema:familyName Beauchemin
175 schema:givenName Catherine A. A.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273325013.63
177 rdf:type schema:Person
178 sg:pub.10.1007/s00285-009-0281-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015603929
179 https://doi.org/10.1007/s00285-009-0281-8
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s00430-011-0206-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033255511
182 https://doi.org/10.1007/s00430-011-0206-1
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1471-2458-11-s1-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014564384
185 https://doi.org/10.1186/1471-2458-11-s1-s10
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/s12879-016-1383-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011063382
188 https://doi.org/10.1186/s12879-016-1383-8
189 rdf:type schema:CreativeWork
190 sg:pub.10.2165/00003088-198106060-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024854213
191 https://doi.org/10.2165/00003088-198106060-00002
192 rdf:type schema:CreativeWork
193 sg:pub.10.2165/00003088-199937060-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013722712
194 https://doi.org/10.2165/00003088-199937060-00003
195 rdf:type schema:CreativeWork
196 sg:pub.10.2165/11534730-000000000-00000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003074611
197 https://doi.org/10.2165/11534730-000000000-00000
198 rdf:type schema:CreativeWork
199 grid-institutes:grid.264766.7 schema:alternateName Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA
200 schema:name Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA
201 rdf:type schema:Organization
202 grid-institutes:grid.68312.3e schema:alternateName Department of Physics, Ryerson University, Toronto, ON, Canada
203 schema:name Department of Physics, Ryerson University, Toronto, ON, Canada
204 rdf:type schema:Organization
205 grid-institutes:grid.7597.c schema:alternateName Interdisciplinary Theoretical Science (iTHES) Research Group at RIKEN, Wako, Japan
206 schema:name Department of Physics, Ryerson University, Toronto, ON, Canada
207 Interdisciplinary Theoretical Science (iTHES) Research Group at RIKEN, Wako, Japan
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...