Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12-09

AUTHORS

Gyeong Cheol Park, Weiqi Xue, Molly Piels, Darko Zibar, Jesper Mørk, Elizaveta Semenova, Il-Sug Chung

ABSTRACT

For on-chip interconnects, an ideal light source should have an ultralow energy consumption per bandwidth (operating en-ergy) as well as sufficient output power for error-free detection. Nanocavity lasers have been considered the most ideal for smaller operating energy. However, they have a challenge in obtaining a sufficient output power. Here, as an alternative, we propose an ultrahigh-speed microcavity laser structure, based on a vertical cavity with a high-contrast grating (HCG) mirror for transverse magnetic (TM) polarisation. By using the TM HCG, a very small mode volume and an un-pumped compact optical feedback structure can be realised, which together tailor the frequency response function for achieving a very high speed at low injection currents. Furthermore, light can be emitted laterally into a Si waveguide. From an 1.54-μm optically-pumped laser, a 3-dB frequency of 27 GHz was obtained at a pumping level corresponding to sub-mA. Using measured 3-dB frequen-cies and calculated equivalent currents, the modulation current efficiency factor (MCEF) is estimated to be 42.1 GHz/mA1/2, which is superior among microcavity lasers. This shows a high potential for a very high speed at low injection currents or avery small heat generation at high bitrates, which are highly desirable for both on-chip and off-chip applications. More... »

PAGES

38801

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep38801

DOI

http://dx.doi.org/10.1038/srep38801

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013637637

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27934926


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Gyeong Cheol", 
        "id": "sg:person.01253341202.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253341202.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Weiqi", 
        "id": "sg:person.014350311710.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350311710.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piels", 
        "givenName": "Molly", 
        "id": "sg:person.014023234367.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014023234367.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zibar", 
        "givenName": "Darko", 
        "id": "sg:person.01221275164.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221275164.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00f8rk", 
        "givenName": "Jesper", 
        "id": "sg:person.01047545773.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047545773.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semenova", 
        "givenName": "Elizaveta", 
        "id": "sg:person.010767406335.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Il-Sug", 
        "id": "sg:person.01264675302.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264675302.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2008.266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003133085", 
          "https://doi.org/10.1038/nphoton.2008.266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034954029", 
          "https://doi.org/10.1038/nphoton.2013.110"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12-09", 
    "datePublishedReg": "2016-12-09", 
    "description": "For on-chip interconnects, an ideal light source should have an ultralow energy consumption per bandwidth (operating en-ergy) as well as sufficient output power for error-free detection. Nanocavity lasers have been considered the most ideal for smaller operating energy. However, they have a challenge in obtaining a sufficient output power. Here, as an alternative, we propose an ultrahigh-speed microcavity laser structure, based on a vertical cavity with a high-contrast grating (HCG) mirror for transverse magnetic (TM) polarisation. By using the TM HCG, a very small mode volume and an un-pumped compact optical feedback structure can be realised, which together tailor the frequency response function for achieving a very high speed at low injection currents. Furthermore, light can be emitted laterally into a Si waveguide. From an 1.54-\u03bcm optically-pumped laser, a 3-dB frequency of 27\u2009GHz was obtained at a pumping level corresponding to sub-mA. Using measured 3-dB frequen-cies and calculated equivalent currents, the modulation current efficiency factor (MCEF) is estimated to be 42.1\u2009GHz/mA1/2, which is superior among microcavity lasers. This shows a high potential for a very high speed at low injection currents or avery small heat generation at high bitrates, which are highly desirable for both on-chip and off-chip applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep38801", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "modulation current efficiency factor", 
      "low injection currents", 
      "sufficient output power", 
      "injection current", 
      "GHz/mA1/2", 
      "small mode volume", 
      "ideal light source", 
      "output power", 
      "high contrast grating mirror", 
      "current efficiency factor", 
      "ultralow energy consumption", 
      "off-chip applications", 
      "transverse magnetic polarization", 
      "error-free detection", 
      "nanocavity lasers", 
      "chip lasers", 
      "laser structures", 
      "mode volume", 
      "high speed", 
      "microcavity lasers", 
      "Si waveguides", 
      "grating mirror", 
      "small heat generation", 
      "chip interconnects", 
      "light source", 
      "magnetic polarization", 
      "laser", 
      "high bitrate", 
      "vertical cavity", 
      "frequency response functions", 
      "operating energy", 
      "equivalent currents", 
      "energy consumption", 
      "heat generation", 
      "dynamic characteristics", 
      "response function", 
      "feedback structure", 
      "efficiency factor", 
      "high potential", 
      "current", 
      "waveguide", 
      "bandwidth", 
      "GHz", 
      "interconnects", 
      "mirror", 
      "chip", 
      "polarization", 
      "bitrate", 
      "speed", 
      "Si", 
      "energy", 
      "power", 
      "light", 
      "structure", 
      "applications", 
      "cavity", 
      "detection", 
      "sub", 
      "consumption", 
      "frequency", 
      "source", 
      "generation", 
      "challenges", 
      "potential", 
      "characteristics", 
      "alternative", 
      "volume", 
      "function", 
      "factors", 
      "hCG", 
      "levels"
    ], 
    "name": "Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics", 
    "pagination": "38801", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013637637"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep38801"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27934926"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep38801", 
      "https://app.dimensions.ai/details/publication/pub.1013637637"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_715.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep38801"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep38801'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep38801'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep38801'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep38801'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      22 PREDICATES      99 URIs      89 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep38801 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N00ae98b5c94c45e9af8931489aa20a2d
4 schema:citation sg:pub.10.1038/nphoton.2008.266
5 sg:pub.10.1038/nphoton.2013.110
6 schema:datePublished 2016-12-09
7 schema:datePublishedReg 2016-12-09
8 schema:description For on-chip interconnects, an ideal light source should have an ultralow energy consumption per bandwidth (operating en-ergy) as well as sufficient output power for error-free detection. Nanocavity lasers have been considered the most ideal for smaller operating energy. However, they have a challenge in obtaining a sufficient output power. Here, as an alternative, we propose an ultrahigh-speed microcavity laser structure, based on a vertical cavity with a high-contrast grating (HCG) mirror for transverse magnetic (TM) polarisation. By using the TM HCG, a very small mode volume and an un-pumped compact optical feedback structure can be realised, which together tailor the frequency response function for achieving a very high speed at low injection currents. Furthermore, light can be emitted laterally into a Si waveguide. From an 1.54-μm optically-pumped laser, a 3-dB frequency of 27 GHz was obtained at a pumping level corresponding to sub-mA. Using measured 3-dB frequen-cies and calculated equivalent currents, the modulation current efficiency factor (MCEF) is estimated to be 42.1 GHz/mA1/2, which is superior among microcavity lasers. This shows a high potential for a very high speed at low injection currents or avery small heat generation at high bitrates, which are highly desirable for both on-chip and off-chip applications.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N0da04f22547049b8a8348ef729b38453
13 Nccf5f32134854bb48a1409975e6affe2
14 sg:journal.1045337
15 schema:keywords GHz
16 GHz/mA1/2
17 Si
18 Si waveguides
19 alternative
20 applications
21 bandwidth
22 bitrate
23 cavity
24 challenges
25 characteristics
26 chip
27 chip interconnects
28 chip lasers
29 consumption
30 current
31 current efficiency factor
32 detection
33 dynamic characteristics
34 efficiency factor
35 energy
36 energy consumption
37 equivalent currents
38 error-free detection
39 factors
40 feedback structure
41 frequency
42 frequency response functions
43 function
44 generation
45 grating mirror
46 hCG
47 heat generation
48 high bitrate
49 high contrast grating mirror
50 high potential
51 high speed
52 ideal light source
53 injection current
54 interconnects
55 laser
56 laser structures
57 levels
58 light
59 light source
60 low injection currents
61 magnetic polarization
62 microcavity lasers
63 mirror
64 mode volume
65 modulation current efficiency factor
66 nanocavity lasers
67 off-chip applications
68 operating energy
69 output power
70 polarization
71 potential
72 power
73 response function
74 small heat generation
75 small mode volume
76 source
77 speed
78 structure
79 sub
80 sufficient output power
81 transverse magnetic polarization
82 ultralow energy consumption
83 vertical cavity
84 volume
85 waveguide
86 schema:name Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics
87 schema:pagination 38801
88 schema:productId N7420d369c5b34a3abbd00c382fc9e0f3
89 Na746a15d48dc4d02a0966338a1d15a6b
90 Nb3d6fcb80a52456d80b53ae0f66465a5
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637637
92 https://doi.org/10.1038/srep38801
93 schema:sdDatePublished 2022-05-20T07:32
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Ne252df9672e1451098879cf111b3a664
96 schema:url https://doi.org/10.1038/srep38801
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N00ae98b5c94c45e9af8931489aa20a2d rdf:first sg:person.01253341202.17
101 rdf:rest N35846f754f7146f0a0e1ce6e112f9459
102 N0da04f22547049b8a8348ef729b38453 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 N160dac54aa6b4d2ca271395741294091 rdf:first sg:person.014023234367.45
105 rdf:rest N5a5dbaccaeb942d589718f840d6f9787
106 N35846f754f7146f0a0e1ce6e112f9459 rdf:first sg:person.014350311710.34
107 rdf:rest N160dac54aa6b4d2ca271395741294091
108 N5a5dbaccaeb942d589718f840d6f9787 rdf:first sg:person.01221275164.15
109 rdf:rest N5f7dd1d6802040ceb865e5725f404db2
110 N5f7dd1d6802040ceb865e5725f404db2 rdf:first sg:person.01047545773.07
111 rdf:rest Ne9b64f061e36498e96efb768ae848a56
112 N7420d369c5b34a3abbd00c382fc9e0f3 schema:name dimensions_id
113 schema:value pub.1013637637
114 rdf:type schema:PropertyValue
115 Na5b3dbed23d545e4a94b0d81e3e2d539 rdf:first sg:person.01264675302.88
116 rdf:rest rdf:nil
117 Na746a15d48dc4d02a0966338a1d15a6b schema:name doi
118 schema:value 10.1038/srep38801
119 rdf:type schema:PropertyValue
120 Nb3d6fcb80a52456d80b53ae0f66465a5 schema:name pubmed_id
121 schema:value 27934926
122 rdf:type schema:PropertyValue
123 Nccf5f32134854bb48a1409975e6affe2 schema:volumeNumber 6
124 rdf:type schema:PublicationVolume
125 Ne252df9672e1451098879cf111b3a664 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Ne9b64f061e36498e96efb768ae848a56 rdf:first sg:person.010767406335.85
128 rdf:rest Na5b3dbed23d545e4a94b0d81e3e2d539
129 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
130 schema:name Engineering
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
133 schema:name Electrical and Electronic Engineering
134 rdf:type schema:DefinedTerm
135 sg:journal.1045337 schema:issn 2045-2322
136 schema:name Scientific Reports
137 schema:publisher Springer Nature
138 rdf:type schema:Periodical
139 sg:person.01047545773.07 schema:affiliation grid-institutes:grid.5170.3
140 schema:familyName Mørk
141 schema:givenName Jesper
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047545773.07
143 rdf:type schema:Person
144 sg:person.010767406335.85 schema:affiliation grid-institutes:grid.5170.3
145 schema:familyName Semenova
146 schema:givenName Elizaveta
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85
148 rdf:type schema:Person
149 sg:person.01221275164.15 schema:affiliation grid-institutes:grid.5170.3
150 schema:familyName Zibar
151 schema:givenName Darko
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221275164.15
153 rdf:type schema:Person
154 sg:person.01253341202.17 schema:affiliation grid-institutes:grid.5170.3
155 schema:familyName Park
156 schema:givenName Gyeong Cheol
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253341202.17
158 rdf:type schema:Person
159 sg:person.01264675302.88 schema:affiliation grid-institutes:grid.5170.3
160 schema:familyName Chung
161 schema:givenName Il-Sug
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264675302.88
163 rdf:type schema:Person
164 sg:person.014023234367.45 schema:affiliation grid-institutes:grid.5170.3
165 schema:familyName Piels
166 schema:givenName Molly
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014023234367.45
168 rdf:type schema:Person
169 sg:person.014350311710.34 schema:affiliation grid-institutes:grid.5170.3
170 schema:familyName Xue
171 schema:givenName Weiqi
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350311710.34
173 rdf:type schema:Person
174 sg:pub.10.1038/nphoton.2008.266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003133085
175 https://doi.org/10.1038/nphoton.2008.266
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nphoton.2013.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034954029
178 https://doi.org/10.1038/nphoton.2013.110
179 rdf:type schema:CreativeWork
180 grid-institutes:grid.5170.3 schema:alternateName Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark
181 schema:name Department of Photonics Engineering (DTU Fotonik), Technical University of Denmark, DK-2800, Kgs, Lyngby, Denmark
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...