The colored Hanbury Brown–Twiss effect View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

B. Silva, C. Sánchez Muñoz, D. Ballarini, A. González-Tudela, M. de Giorgi, G. Gigli, K. West, L. Pfeiffer, E. del Valle, D. Sanvitto, F. P. Laussy

ABSTRACT

The Hanbury Brown-Twiss effect is one of the celebrated phenomenologies of modern physics that accommodates equally well classical (interferences of waves) and quantum (correlations between indistinguishable particles) interpretations. The effect was discovered in the late thirties with a basic observation of Hanbury Brown that radio-pulses from two distinct antennas generate signals on the oscilloscope that wiggle similarly to the naked eye. When Hanbury Brown and his mathematician colleague Twiss took the obvious step to propose bringing the effect in the optical range, they met with considerable opposition as single-photon interferences were deemed impossible. The Hanbury Brown-Twiss effect is nowadays universally accepted and, being so fundamental, embodies many subtleties of our understanding of the wave/particle dual nature of light. Thanks to a novel experimental technique, we report here a generalized version of the Hanbury Brown-Twiss effect to include the frequency of the detected light, or, from the particle point of view, the energy of the detected photons. Our source of light is a polariton condensate, that allows high-resolution filtering of a spectrally broad source with a high degree of coherence. In addition to the known tendencies of indistinguishable photons to arrive together on the detector, we find that photons of different colors present the opposite characteristic of avoiding each others. We postulate that fermions can be similarly brought to exhibit positive (boson-like) correlations by frequency filtering. More... »

PAGES

37980

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep37980

DOI

http://dx.doi.org/10.1038/srep37980

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006387728

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27922021


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Autonomous University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5515.4", 
          "name": [
            "CNR NANOTEC\u2013Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy", 
            "Departamento de F\u00edsica Te\u00f3rica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Aut\u00f3noma de Madrid, 28049 Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silva", 
        "givenName": "B.", 
        "id": "sg:person.015663156261.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663156261.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5515.4", 
          "name": [
            "Departamento de F\u00edsica Te\u00f3rica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Aut\u00f3noma de Madrid, 28049 Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mu\u00f1oz", 
        "givenName": "C. S\u00e1nchez", 
        "id": "sg:person.010022707175.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010022707175.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CNR NANOTEC\u2013Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ballarini", 
        "givenName": "D.", 
        "id": "sg:person.01151435234.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151435234.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Max\u2013Planck Institut f\u00fcr Quantenoptik, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez-Tudela", 
        "givenName": "A.", 
        "id": "sg:person.01042370376.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042370376.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CNR NANOTEC\u2013Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Giorgi", 
        "givenName": "M.", 
        "id": "sg:person.016204215120.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204215120.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CNR NANOTEC\u2013Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gigli", 
        "givenName": "G.", 
        "id": "sg:person.01247265105.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247265105.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "West", 
        "givenName": "K.", 
        "id": "sg:person.07405467252.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07405467252.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfeiffer", 
        "givenName": "L.", 
        "id": "sg:person.01066522217.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066522217.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5515.4", 
          "name": [
            "Departamento de F\u00edsica Te\u00f3rica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Aut\u00f3noma de Madrid, 28049 Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "del Valle", 
        "givenName": "E.", 
        "id": "sg:person.01177717431.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177717431.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CNR NANOTEC\u2013Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanvitto", 
        "givenName": "D.", 
        "id": "sg:person.0623153402.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623153402.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5515.4", 
          "name": [
            "Russian Quantum Center, Novaya 100, 143025 Skolkovo, Moscow Region, Russia", 
            "Departamento de F\u00edsica Te\u00f3rica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Aut\u00f3noma de Madrid, 28049 Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laussy", 
        "givenName": "F. P.", 
        "id": "sg:person.01365616011.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365616011.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.96.130501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005701001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.130501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005701001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006272835", 
          "https://doi.org/10.1038/nphoton.2010.174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2012.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007571862", 
          "https://doi.org/10.1038/nphoton.2012.23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.043807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010257037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.91.043807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010257037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/1781449a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010280865", 
          "https://doi.org/10.1038/1781449a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/177027a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010536038", 
          "https://doi.org/10.1038/177027a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.023601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012497733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.023601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012497733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.183601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014624231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.183601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014624231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018558789", 
          "https://doi.org/10.1038/nature05586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.052111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019438818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.052111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019438818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.201300181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021398935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/1781046a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024920849", 
          "https://doi.org/10.1038/1781046a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.195125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028161608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.195125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028161608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028583221", 
          "https://doi.org/10.1038/nature05513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028583221", 
          "https://doi.org/10.1038/nature05513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.161303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030016906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.161303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030016906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031585885", 
          "https://doi.org/10.1038/nature04446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031585885", 
          "https://doi.org/10.1038/nature04446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031585885", 
          "https://doi.org/10.1038/nature04446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/15/3/033036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031653019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1009847108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033370022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034306523", 
          "https://doi.org/10.1038/nphoton.2014.114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1979.0092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037453211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4936889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039462626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041026452", 
          "https://doi.org/10.1038/nature08126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041026452", 
          "https://doi.org/10.1038/nature08126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.1267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044142316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.1267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044142316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/1701061a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045455451", 
          "https://doi.org/10.1038/1701061a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.023846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045902529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.023846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045902529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/15/2/025019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050796739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl300638t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056219304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:0198300440120133700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056990806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3700/19/18/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058952290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/17/12/123021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059136717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.131.2766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060427420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.131.2766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060427420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.47.510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060487390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.47.510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060487390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.033833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060514147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.033833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060514147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.067402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.067402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.067404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.067404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.88.045008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.88.045008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1074464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1174488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1174488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.284.5412.296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062564860"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "The Hanbury Brown-Twiss effect is one of the celebrated phenomenologies of modern physics that accommodates equally well classical (interferences of waves) and quantum (correlations between indistinguishable particles) interpretations. The effect was discovered in the late thirties with a basic observation of Hanbury Brown that radio-pulses from two distinct antennas generate signals on the oscilloscope that wiggle similarly to the naked eye. When Hanbury Brown and his mathematician colleague Twiss took the obvious step to propose bringing the effect in the optical range, they met with considerable opposition as single-photon interferences were deemed impossible. The Hanbury Brown-Twiss effect is nowadays universally accepted and, being so fundamental, embodies many subtleties of our understanding of the wave/particle dual nature of light. Thanks to a novel experimental technique, we report here a generalized version of the Hanbury Brown-Twiss effect to include the frequency of the detected light, or, from the particle point of view, the energy of the detected photons. Our source of light is a polariton condensate, that allows high-resolution filtering of a spectrally broad source with a high degree of coherence. In addition to the known tendencies of indistinguishable photons to arrive together on the detector, we find that photons of different colors present the opposite characteristic of avoiding each others. We postulate that fermions can be similarly brought to exhibit positive (boson-like) correlations by frequency filtering.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep37980", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3852369", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3795295", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "The colored Hanbury Brown\u2013Twiss effect", 
    "pagination": "37980", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e6d358d23cd64a4dd06bb4972eb97d5aec32f7fbffa85db75e4777bd7f845f9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27922021"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep37980"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006387728"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep37980", 
      "https://app.dimensions.ai/details/publication/pub.1006387728"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2016/161206/srep37980/full/srep37980.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep37980'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep37980'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep37980'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep37980'


 

This table displays all metadata directly associated to this object as RDF triples.

291 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep37980 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nece09f7392694362a745218a412cc62d
4 schema:citation sg:pub.10.1038/1701061a0
5 sg:pub.10.1038/177027a0
6 sg:pub.10.1038/1781046a0
7 sg:pub.10.1038/1781449a0
8 sg:pub.10.1038/nature04446
9 sg:pub.10.1038/nature05513
10 sg:pub.10.1038/nature05586
11 sg:pub.10.1038/nature08126
12 sg:pub.10.1038/nphoton.2010.174
13 sg:pub.10.1038/nphoton.2012.23
14 sg:pub.10.1038/nphoton.2014.114
15 https://doi.org/10.1002/andp.201300181
16 https://doi.org/10.1021/nl300638t
17 https://doi.org/10.1051/jphys:0198300440120133700
18 https://doi.org/10.1063/1.4936889
19 https://doi.org/10.1073/pnas.1009847108
20 https://doi.org/10.1088/0022-3700/19/18/012
21 https://doi.org/10.1088/1367-2630/15/2/025019
22 https://doi.org/10.1088/1367-2630/15/3/033036
23 https://doi.org/10.1088/1367-2630/17/12/123021
24 https://doi.org/10.1098/rsta.1979.0092
25 https://doi.org/10.1103/physrev.131.2766
26 https://doi.org/10.1103/physreva.47.510
27 https://doi.org/10.1103/physreva.90.023846
28 https://doi.org/10.1103/physreva.90.052111
29 https://doi.org/10.1103/physreva.91.043807
30 https://doi.org/10.1103/physreva.92.033833
31 https://doi.org/10.1103/physrevb.77.161303
32 https://doi.org/10.1103/physrevb.91.195125
33 https://doi.org/10.1103/physrevlett.100.067402
34 https://doi.org/10.1103/physrevlett.101.067404
35 https://doi.org/10.1103/physrevlett.107.023601
36 https://doi.org/10.1103/physrevlett.109.183601
37 https://doi.org/10.1103/physrevlett.67.661
38 https://doi.org/10.1103/physrevlett.69.593
39 https://doi.org/10.1103/physrevlett.96.130501
40 https://doi.org/10.1103/revmodphys.78.1267
41 https://doi.org/10.1103/revmodphys.88.045008
42 https://doi.org/10.1126/science.1074464
43 https://doi.org/10.1126/science.1174488
44 https://doi.org/10.1126/science.284.5412.296
45 schema:datePublished 2016-12
46 schema:datePublishedReg 2016-12-01
47 schema:description The Hanbury Brown-Twiss effect is one of the celebrated phenomenologies of modern physics that accommodates equally well classical (interferences of waves) and quantum (correlations between indistinguishable particles) interpretations. The effect was discovered in the late thirties with a basic observation of Hanbury Brown that radio-pulses from two distinct antennas generate signals on the oscilloscope that wiggle similarly to the naked eye. When Hanbury Brown and his mathematician colleague Twiss took the obvious step to propose bringing the effect in the optical range, they met with considerable opposition as single-photon interferences were deemed impossible. The Hanbury Brown-Twiss effect is nowadays universally accepted and, being so fundamental, embodies many subtleties of our understanding of the wave/particle dual nature of light. Thanks to a novel experimental technique, we report here a generalized version of the Hanbury Brown-Twiss effect to include the frequency of the detected light, or, from the particle point of view, the energy of the detected photons. Our source of light is a polariton condensate, that allows high-resolution filtering of a spectrally broad source with a high degree of coherence. In addition to the known tendencies of indistinguishable photons to arrive together on the detector, we find that photons of different colors present the opposite characteristic of avoiding each others. We postulate that fermions can be similarly brought to exhibit positive (boson-like) correlations by frequency filtering.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N037aa37c30d04aae95434d35863e0c0c
52 N8f21a72961c44d98a3a5b9a83e9e0461
53 sg:journal.1045337
54 schema:name The colored Hanbury Brown–Twiss effect
55 schema:pagination 37980
56 schema:productId N6bc424a1b0674bb399582bfff0a14476
57 N8d9d52291516487e925b521dec6b4e95
58 Nac8d31c3d4284cd19518bd89cd71a3ac
59 Ncc146b0aa3a548c7903fdc009eeea8fc
60 Ndb3fbdfb54f249fdb0b31f40790c5cf3
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006387728
62 https://doi.org/10.1038/srep37980
63 schema:sdDatePublished 2019-04-10T20:03
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N33f21bb2015a41a39d5ef32b1cbd0e9b
66 schema:url http://www.nature.com/srep/2016/161206/srep37980/full/srep37980.html
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N037aa37c30d04aae95434d35863e0c0c schema:volumeNumber 6
71 rdf:type schema:PublicationVolume
72 N091bd3e1488e4298b6d67fbb79d52189 schema:name Max–Planck Institut für Quantenoptik, 85748 Garching, Germany
73 rdf:type schema:Organization
74 N17445deb78fb48a0b80a110ba636034c rdf:first sg:person.01365616011.58
75 rdf:rest rdf:nil
76 N289ff9eb115d4cdead3012f353809c84 rdf:first sg:person.07405467252.47
77 rdf:rest Nb045efa8adab4dc3b856a69300088483
78 N335e889bc0f54609bb687cdca4aea61c schema:name CNR NANOTEC–Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
79 rdf:type schema:Organization
80 N33d5a335f259484abf00dc177d258265 rdf:first sg:person.01151435234.94
81 rdf:rest N4b7052d57a1c46ddb4d864d7ee4ededd
82 N33f21bb2015a41a39d5ef32b1cbd0e9b schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N44856273acb6441791f87b36de5c08dd schema:name CNR NANOTEC–Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
85 rdf:type schema:Organization
86 N4b7052d57a1c46ddb4d864d7ee4ededd rdf:first sg:person.01042370376.42
87 rdf:rest Nee12b557e70e4647b86a392a85a71673
88 N6bc424a1b0674bb399582bfff0a14476 schema:name dimensions_id
89 schema:value pub.1006387728
90 rdf:type schema:PropertyValue
91 N749a044eaa9b4c97ba002a44c4f59c3d rdf:first sg:person.01247265105.59
92 rdf:rest N289ff9eb115d4cdead3012f353809c84
93 N8d9d52291516487e925b521dec6b4e95 schema:name doi
94 schema:value 10.1038/srep37980
95 rdf:type schema:PropertyValue
96 N8f21a72961c44d98a3a5b9a83e9e0461 schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 N9b83b2631535479d85454ea5b1d7caa4 schema:name CNR NANOTEC–Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
99 rdf:type schema:Organization
100 Nac8d31c3d4284cd19518bd89cd71a3ac schema:name nlm_unique_id
101 schema:value 101563288
102 rdf:type schema:PropertyValue
103 Nb045efa8adab4dc3b856a69300088483 rdf:first sg:person.01066522217.56
104 rdf:rest Nb6921fe395984950b0a36cd20e5e4b47
105 Nb6921fe395984950b0a36cd20e5e4b47 rdf:first sg:person.01177717431.44
106 rdf:rest Nef7fa58b75794d6293aaf8dda444efbe
107 Ncc146b0aa3a548c7903fdc009eeea8fc schema:name pubmed_id
108 schema:value 27922021
109 rdf:type schema:PropertyValue
110 Nd8445943057e44dd8e5e67c739a5383e rdf:first sg:person.010022707175.29
111 rdf:rest N33d5a335f259484abf00dc177d258265
112 Ndb3fbdfb54f249fdb0b31f40790c5cf3 schema:name readcube_id
113 schema:value 1e6d358d23cd64a4dd06bb4972eb97d5aec32f7fbffa85db75e4777bd7f845f9
114 rdf:type schema:PropertyValue
115 Ne9eee05a62f7482d8de68a24052dd363 schema:name CNR NANOTEC–Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
116 rdf:type schema:Organization
117 Nece09f7392694362a745218a412cc62d rdf:first sg:person.015663156261.17
118 rdf:rest Nd8445943057e44dd8e5e67c739a5383e
119 Nee12b557e70e4647b86a392a85a71673 rdf:first sg:person.016204215120.06
120 rdf:rest N749a044eaa9b4c97ba002a44c4f59c3d
121 Nef7fa58b75794d6293aaf8dda444efbe rdf:first sg:person.0623153402.13
122 rdf:rest N17445deb78fb48a0b80a110ba636034c
123 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
124 schema:name Physical Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
127 schema:name Optical Physics
128 rdf:type schema:DefinedTerm
129 sg:grant.3795295 http://pending.schema.org/fundedItem sg:pub.10.1038/srep37980
130 rdf:type schema:MonetaryGrant
131 sg:grant.3852369 http://pending.schema.org/fundedItem sg:pub.10.1038/srep37980
132 rdf:type schema:MonetaryGrant
133 sg:journal.1045337 schema:issn 2045-2322
134 schema:name Scientific Reports
135 rdf:type schema:Periodical
136 sg:person.010022707175.29 schema:affiliation https://www.grid.ac/institutes/grid.5515.4
137 schema:familyName Muñoz
138 schema:givenName C. Sánchez
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010022707175.29
140 rdf:type schema:Person
141 sg:person.01042370376.42 schema:affiliation N091bd3e1488e4298b6d67fbb79d52189
142 schema:familyName González-Tudela
143 schema:givenName A.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042370376.42
145 rdf:type schema:Person
146 sg:person.01066522217.56 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
147 schema:familyName Pfeiffer
148 schema:givenName L.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066522217.56
150 rdf:type schema:Person
151 sg:person.01151435234.94 schema:affiliation N9b83b2631535479d85454ea5b1d7caa4
152 schema:familyName Ballarini
153 schema:givenName D.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151435234.94
155 rdf:type schema:Person
156 sg:person.01177717431.44 schema:affiliation https://www.grid.ac/institutes/grid.5515.4
157 schema:familyName del Valle
158 schema:givenName E.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177717431.44
160 rdf:type schema:Person
161 sg:person.01247265105.59 schema:affiliation N335e889bc0f54609bb687cdca4aea61c
162 schema:familyName Gigli
163 schema:givenName G.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247265105.59
165 rdf:type schema:Person
166 sg:person.01365616011.58 schema:affiliation https://www.grid.ac/institutes/grid.5515.4
167 schema:familyName Laussy
168 schema:givenName F. P.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365616011.58
170 rdf:type schema:Person
171 sg:person.015663156261.17 schema:affiliation https://www.grid.ac/institutes/grid.5515.4
172 schema:familyName Silva
173 schema:givenName B.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663156261.17
175 rdf:type schema:Person
176 sg:person.016204215120.06 schema:affiliation N44856273acb6441791f87b36de5c08dd
177 schema:familyName de Giorgi
178 schema:givenName M.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204215120.06
180 rdf:type schema:Person
181 sg:person.0623153402.13 schema:affiliation Ne9eee05a62f7482d8de68a24052dd363
182 schema:familyName Sanvitto
183 schema:givenName D.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623153402.13
185 rdf:type schema:Person
186 sg:person.07405467252.47 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
187 schema:familyName West
188 schema:givenName K.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07405467252.47
190 rdf:type schema:Person
191 sg:pub.10.1038/1701061a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045455451
192 https://doi.org/10.1038/1701061a0
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/177027a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010536038
195 https://doi.org/10.1038/177027a0
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/1781046a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024920849
198 https://doi.org/10.1038/1781046a0
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/1781449a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010280865
201 https://doi.org/10.1038/1781449a0
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nature04446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031585885
204 https://doi.org/10.1038/nature04446
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nature05513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028583221
207 https://doi.org/10.1038/nature05513
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nature05586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018558789
210 https://doi.org/10.1038/nature05586
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nature08126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041026452
213 https://doi.org/10.1038/nature08126
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nphoton.2010.174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006272835
216 https://doi.org/10.1038/nphoton.2010.174
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nphoton.2012.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007571862
219 https://doi.org/10.1038/nphoton.2012.23
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nphoton.2014.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034306523
222 https://doi.org/10.1038/nphoton.2014.114
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1002/andp.201300181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021398935
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/nl300638t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219304
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1051/jphys:0198300440120133700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056990806
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1063/1.4936889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039462626
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.1009847108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033370022
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1088/0022-3700/19/18/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058952290
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1088/1367-2630/15/2/025019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050796739
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1088/1367-2630/15/3/033036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031653019
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1088/1367-2630/17/12/123021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059136717
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1098/rsta.1979.0092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037453211
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrev.131.2766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060427420
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physreva.47.510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060487390
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physreva.90.023846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045902529
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/physreva.90.052111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019438818
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physreva.91.043807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010257037
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physreva.92.033833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060514147
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1103/physrevb.77.161303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030016906
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevb.91.195125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028161608
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevlett.100.067402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752918
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/physrevlett.101.067404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753885
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1103/physrevlett.107.023601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012497733
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1103/physrevlett.109.183601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014624231
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1103/physrevlett.67.661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803926
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1103/physrevlett.69.593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805983
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1103/physrevlett.96.130501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005701001
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1103/revmodphys.78.1267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044142316
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1103/revmodphys.88.045008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839829
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1126/science.1074464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446781
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1126/science.1174488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460192
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1126/science.284.5412.296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564860
283 rdf:type schema:CreativeWork
284 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
285 schema:name Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
286 rdf:type schema:Organization
287 https://www.grid.ac/institutes/grid.5515.4 schema:alternateName Autonomous University of Madrid
288 schema:name CNR NANOTEC–Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
289 Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
290 Russian Quantum Center, Novaya 100, 143025 Skolkovo, Moscow Region, Russia
291 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...