Ontology type: schema:ScholarlyArticle Open Access: True
2016-12
AUTHORSB. Silva, C. Sánchez Muñoz, D. Ballarini, A. González-Tudela, M. de Giorgi, G. Gigli, K. West, L. Pfeiffer, E. del Valle, D. Sanvitto, F. P. Laussy
ABSTRACTThe Hanbury Brown-Twiss effect is one of the celebrated phenomenologies of modern physics that accommodates equally well classical (interferences of waves) and quantum (correlations between indistinguishable particles) interpretations. The effect was discovered in the late thirties with a basic observation of Hanbury Brown that radio-pulses from two distinct antennas generate signals on the oscilloscope that wiggle similarly to the naked eye. When Hanbury Brown and his mathematician colleague Twiss took the obvious step to propose bringing the effect in the optical range, they met with considerable opposition as single-photon interferences were deemed impossible. The Hanbury Brown-Twiss effect is nowadays universally accepted and, being so fundamental, embodies many subtleties of our understanding of the wave/particle dual nature of light. Thanks to a novel experimental technique, we report here a generalized version of the Hanbury Brown-Twiss effect to include the frequency of the detected light, or, from the particle point of view, the energy of the detected photons. Our source of light is a polariton condensate, that allows high-resolution filtering of a spectrally broad source with a high degree of coherence. In addition to the known tendencies of indistinguishable photons to arrive together on the detector, we find that photons of different colors present the opposite characteristic of avoiding each others. We postulate that fermions can be similarly brought to exhibit positive (boson-like) correlations by frequency filtering. More... »
PAGES37980
http://scigraph.springernature.com/pub.10.1038/srep37980
DOIhttp://dx.doi.org/10.1038/srep37980
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1006387728
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/27922021
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Optical Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Autonomous University of Madrid",
"id": "https://www.grid.ac/institutes/grid.5515.4",
"name": [
"CNR NANOTEC\u2013Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy",
"Departamento de F\u00edsica Te\u00f3rica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Aut\u00f3noma de Madrid, 28049 Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Silva",
"givenName": "B.",
"id": "sg:person.015663156261.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663156261.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Autonomous University of Madrid",
"id": "https://www.grid.ac/institutes/grid.5515.4",
"name": [
"Departamento de F\u00edsica Te\u00f3rica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Aut\u00f3noma de Madrid, 28049 Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Mu\u00f1oz",
"givenName": "C. S\u00e1nchez",
"id": "sg:person.010022707175.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010022707175.29"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"CNR NANOTEC\u2013Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy"
],
"type": "Organization"
},
"familyName": "Ballarini",
"givenName": "D.",
"id": "sg:person.01151435234.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151435234.94"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Max\u2013Planck Institut f\u00fcr Quantenoptik, 85748 Garching, Germany"
],
"type": "Organization"
},
"familyName": "Gonz\u00e1lez-Tudela",
"givenName": "A.",
"id": "sg:person.01042370376.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042370376.42"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"CNR NANOTEC\u2013Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy"
],
"type": "Organization"
},
"familyName": "de Giorgi",
"givenName": "M.",
"id": "sg:person.016204215120.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016204215120.06"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"CNR NANOTEC\u2013Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy"
],
"type": "Organization"
},
"familyName": "Gigli",
"givenName": "G.",
"id": "sg:person.01247265105.59",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247265105.59"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Princeton University",
"id": "https://www.grid.ac/institutes/grid.16750.35",
"name": [
"Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA"
],
"type": "Organization"
},
"familyName": "West",
"givenName": "K.",
"id": "sg:person.07405467252.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07405467252.47"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Princeton University",
"id": "https://www.grid.ac/institutes/grid.16750.35",
"name": [
"Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA"
],
"type": "Organization"
},
"familyName": "Pfeiffer",
"givenName": "L.",
"id": "sg:person.01066522217.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066522217.56"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Autonomous University of Madrid",
"id": "https://www.grid.ac/institutes/grid.5515.4",
"name": [
"Departamento de F\u00edsica Te\u00f3rica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Aut\u00f3noma de Madrid, 28049 Madrid, Spain"
],
"type": "Organization"
},
"familyName": "del Valle",
"givenName": "E.",
"id": "sg:person.01177717431.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177717431.44"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"CNR NANOTEC\u2013Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy"
],
"type": "Organization"
},
"familyName": "Sanvitto",
"givenName": "D.",
"id": "sg:person.0623153402.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623153402.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Autonomous University of Madrid",
"id": "https://www.grid.ac/institutes/grid.5515.4",
"name": [
"Russian Quantum Center, Novaya 100, 143025 Skolkovo, Moscow Region, Russia",
"Departamento de F\u00edsica Te\u00f3rica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Aut\u00f3noma de Madrid, 28049 Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Laussy",
"givenName": "F. P.",
"id": "sg:person.01365616011.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365616011.58"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1103/physrevlett.96.130501",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005701001"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.96.130501",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005701001"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphoton.2010.174",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006272835",
"https://doi.org/10.1038/nphoton.2010.174"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphoton.2012.23",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007571862",
"https://doi.org/10.1038/nphoton.2012.23"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.91.043807",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010257037"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.91.043807",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010257037"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/1781449a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010280865",
"https://doi.org/10.1038/1781449a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/177027a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010536038",
"https://doi.org/10.1038/177027a0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.107.023601",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012497733"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.107.023601",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012497733"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.109.183601",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014624231"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.109.183601",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014624231"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature05586",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018558789",
"https://doi.org/10.1038/nature05586"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.90.052111",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019438818"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.90.052111",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019438818"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/andp.201300181",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021398935"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/1781046a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024920849",
"https://doi.org/10.1038/1781046a0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.91.195125",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028161608"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.91.195125",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028161608"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature05513",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028583221",
"https://doi.org/10.1038/nature05513"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature05513",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028583221",
"https://doi.org/10.1038/nature05513"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.77.161303",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030016906"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.77.161303",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030016906"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature04446",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031585885",
"https://doi.org/10.1038/nature04446"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature04446",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031585885",
"https://doi.org/10.1038/nature04446"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature04446",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031585885",
"https://doi.org/10.1038/nature04446"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1367-2630/15/3/033036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031653019"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.1009847108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033370022"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphoton.2014.114",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034306523",
"https://doi.org/10.1038/nphoton.2014.114"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1098/rsta.1979.0092",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037453211"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.4936889",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039462626"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature08126",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041026452",
"https://doi.org/10.1038/nature08126"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature08126",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041026452",
"https://doi.org/10.1038/nature08126"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.78.1267",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044142316"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.78.1267",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044142316"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/1701061a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045455451",
"https://doi.org/10.1038/1701061a0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.90.023846",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045902529"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.90.023846",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045902529"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1367-2630/15/2/025019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050796739"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/nl300638t",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056219304"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1051/jphys:0198300440120133700",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056990806"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0022-3700/19/18/012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058952290"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1367-2630/17/12/123021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059136717"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.131.2766",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060427420"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.131.2766",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060427420"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.47.510",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060487390"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.47.510",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060487390"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.92.033833",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060514147"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.92.033833",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060514147"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.100.067402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060752918"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.100.067402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060752918"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.101.067404",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060753885"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.101.067404",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060753885"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.67.661",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060803926"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.67.661",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060803926"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.69.593",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060805983"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.69.593",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060805983"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.88.045008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060839829"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.88.045008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060839829"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1074464",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062446781"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1174488",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062460192"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1174488",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062460192"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.284.5412.296",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062564860"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-12",
"datePublishedReg": "2016-12-01",
"description": "The Hanbury Brown-Twiss effect is one of the celebrated phenomenologies of modern physics that accommodates equally well classical (interferences of waves) and quantum (correlations between indistinguishable particles) interpretations. The effect was discovered in the late thirties with a basic observation of Hanbury Brown that radio-pulses from two distinct antennas generate signals on the oscilloscope that wiggle similarly to the naked eye. When Hanbury Brown and his mathematician colleague Twiss took the obvious step to propose bringing the effect in the optical range, they met with considerable opposition as single-photon interferences were deemed impossible. The Hanbury Brown-Twiss effect is nowadays universally accepted and, being so fundamental, embodies many subtleties of our understanding of the wave/particle dual nature of light. Thanks to a novel experimental technique, we report here a generalized version of the Hanbury Brown-Twiss effect to include the frequency of the detected light, or, from the particle point of view, the energy of the detected photons. Our source of light is a polariton condensate, that allows high-resolution filtering of a spectrally broad source with a high degree of coherence. In addition to the known tendencies of indistinguishable photons to arrive together on the detector, we find that photons of different colors present the opposite characteristic of avoiding each others. We postulate that fermions can be similarly brought to exhibit positive (boson-like) correlations by frequency filtering.",
"genre": "research_article",
"id": "sg:pub.10.1038/srep37980",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.3852369",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3795295",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1045337",
"issn": [
"2045-2322"
],
"name": "Scientific Reports",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "6"
}
],
"name": "The colored Hanbury Brown\u2013Twiss effect",
"pagination": "37980",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"1e6d358d23cd64a4dd06bb4972eb97d5aec32f7fbffa85db75e4777bd7f845f9"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"27922021"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101563288"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/srep37980"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1006387728"
]
}
],
"sameAs": [
"https://doi.org/10.1038/srep37980",
"https://app.dimensions.ai/details/publication/pub.1006387728"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T20:03",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000549.jsonl",
"type": "ScholarlyArticle",
"url": "http://www.nature.com/srep/2016/161206/srep37980/full/srep37980.html"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep37980'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep37980'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep37980'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep37980'
This table displays all metadata directly associated to this object as RDF triples.
291 TRIPLES
21 PREDICATES
70 URIs
21 LITERALS
9 BLANK NODES