Interaction Control to Synchronize Non-synchronizable Networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-11-17

AUTHORS

Malte Schröder, Sagar Chakraborty, Dirk Witthaut, Jan Nagler, Marc Timme

ABSTRACT

Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks' exact interaction topology and consequently have implications for biological and self-organizing technical systems. More... »

PAGES

37142

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep37142

DOI

http://dx.doi.org/10.1038/srep37142

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017282993

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27853266


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 G\u00f6ttingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419514.c", 
          "name": [
            "Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schr\u00f6der", 
        "givenName": "Malte", 
        "id": "sg:person.0707511563.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707511563.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016, India", 
          "id": "http://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakraborty", 
        "givenName": "Sagar", 
        "id": "sg:person.01075117510.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075117510.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical Physics, University of Cologne, 50937 K\u00f6ln, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Forschungszentrum J\u00fclich, Institute for Energy and Climate Research - Systems Analysis and Technology Evaluation (IEK-STE), 52428 J\u00fclich, Germany", 
            "Institute for Theoretical Physics, University of Cologne, 50937 K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Witthaut", 
        "givenName": "Dirk", 
        "id": "sg:person.01110326201.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110326201.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Physics, IfB, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Computational Physics, IfB, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagler", 
        "givenName": "Jan", 
        "id": "sg:person.0615513231.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615513231.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 G\u00f6ttingen, Germany", 
            "Department of Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Timme", 
        "givenName": "Marc", 
        "id": "sg:person.0636350457.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636350457.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep04590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047401445", 
          "https://doi.org/10.1038/srep04590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041701867", 
          "https://doi.org/10.1038/ncomms2939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2010-00211-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017254993", 
          "https://doi.org/10.1140/epjb/e2010-00211-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015650982", 
          "https://doi.org/10.1038/ncomms11061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007285036", 
          "https://doi.org/10.1038/nphys3469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045479836", 
          "https://doi.org/10.1038/nature10011"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11-17", 
    "datePublishedReg": "2016-11-17", 
    "description": "Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks' exact interaction topology and consequently have implications for biological and self-organizing technical systems.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/srep37142", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7888764", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "collective dynamics", 
      "interaction topology", 
      "networked systems", 
      "state space", 
      "stable synchronization", 
      "chaotic units", 
      "control scheme", 
      "interaction control", 
      "arbitrary size", 
      "complex networks", 
      "unit dynamics", 
      "binary control", 
      "interaction strength", 
      "topological constraints", 
      "connected network", 
      "dynamics", 
      "technical systems", 
      "topology", 
      "synchronization", 
      "network", 
      "transient uncoupling", 
      "system", 
      "scheme", 
      "space", 
      "wide range", 
      "constraints", 
      "control", 
      "function", 
      "interaction", 
      "design", 
      "concept", 
      "strength", 
      "range", 
      "size", 
      "units", 
      "knowledge", 
      "implications", 
      "uncoupling", 
      "fundamental collective dynamics", 
      "internal unit dynamics", 
      "certain interaction topologies synchronization", 
      "interaction topologies synchronization", 
      "topologies synchronization", 
      "such non-synchronizable systems", 
      "non-synchronizable systems", 
      "simple binary control", 
      "networks' exact interaction topology", 
      "' exact interaction topology", 
      "self-organizing technical systems", 
      "Non-synchronizable Networks"
    ], 
    "name": "Interaction Control to Synchronize Non-synchronizable Networks", 
    "pagination": "37142", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017282993"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep37142"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27853266"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep37142", 
      "https://app.dimensions.ai/details/publication/pub.1017282993"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_703.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/srep37142"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep37142'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep37142'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep37142'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep37142'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      22 PREDICATES      82 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep37142 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N79346f603e5243f09fac634ee683a564
4 schema:citation sg:pub.10.1038/nature10011
5 sg:pub.10.1038/ncomms11061
6 sg:pub.10.1038/ncomms2939
7 sg:pub.10.1038/nphys3469
8 sg:pub.10.1038/srep04590
9 sg:pub.10.1140/epjb/e2010-00211-6
10 schema:datePublished 2016-11-17
11 schema:datePublishedReg 2016-11-17
12 schema:description Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks' exact interaction topology and consequently have implications for biological and self-organizing technical systems.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N213353aa5118430aa45a824cac1c1c86
17 N9aba9f21156b4be3af207c058dc74f75
18 sg:journal.1045337
19 schema:keywords ' exact interaction topology
20 Non-synchronizable Networks
21 arbitrary size
22 binary control
23 certain interaction topologies synchronization
24 chaotic units
25 collective dynamics
26 complex networks
27 concept
28 connected network
29 constraints
30 control
31 control scheme
32 design
33 dynamics
34 function
35 fundamental collective dynamics
36 implications
37 interaction
38 interaction control
39 interaction strength
40 interaction topologies synchronization
41 interaction topology
42 internal unit dynamics
43 knowledge
44 network
45 networked systems
46 networks' exact interaction topology
47 non-synchronizable systems
48 range
49 scheme
50 self-organizing technical systems
51 simple binary control
52 size
53 space
54 stable synchronization
55 state space
56 strength
57 such non-synchronizable systems
58 synchronization
59 system
60 technical systems
61 topological constraints
62 topologies synchronization
63 topology
64 transient uncoupling
65 uncoupling
66 unit dynamics
67 units
68 wide range
69 schema:name Interaction Control to Synchronize Non-synchronizable Networks
70 schema:pagination 37142
71 schema:productId N111b90c7562843b9a96df97b0b4f6470
72 N1766d9809506468e9e2ae3785994c576
73 Nf113d1201cf846a190b2f707fd430c33
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017282993
75 https://doi.org/10.1038/srep37142
76 schema:sdDatePublished 2022-01-01T18:41
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N583394e2ad5c41ab8a75d35dc8408503
79 schema:url https://doi.org/10.1038/srep37142
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N0a3752a1b45646bab7c6158ffc34e173 rdf:first sg:person.01110326201.31
84 rdf:rest Ne6c78f93f77b4e399b17265674c27f8e
85 N111b90c7562843b9a96df97b0b4f6470 schema:name doi
86 schema:value 10.1038/srep37142
87 rdf:type schema:PropertyValue
88 N1766d9809506468e9e2ae3785994c576 schema:name pubmed_id
89 schema:value 27853266
90 rdf:type schema:PropertyValue
91 N213353aa5118430aa45a824cac1c1c86 schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 N3a0860b8e4554f8285dcc820b992918d rdf:first sg:person.0636350457.17
94 rdf:rest rdf:nil
95 N583394e2ad5c41ab8a75d35dc8408503 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N6165b143b4ca4beeb7041fee502a38e2 rdf:first sg:person.01075117510.01
98 rdf:rest N0a3752a1b45646bab7c6158ffc34e173
99 N79346f603e5243f09fac634ee683a564 rdf:first sg:person.0707511563.46
100 rdf:rest N6165b143b4ca4beeb7041fee502a38e2
101 N9aba9f21156b4be3af207c058dc74f75 schema:volumeNumber 6
102 rdf:type schema:PublicationVolume
103 Ne6c78f93f77b4e399b17265674c27f8e rdf:first sg:person.0615513231.04
104 rdf:rest N3a0860b8e4554f8285dcc820b992918d
105 Nf113d1201cf846a190b2f707fd430c33 schema:name dimensions_id
106 schema:value pub.1017282993
107 rdf:type schema:PropertyValue
108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
109 schema:name Mathematical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
112 schema:name Applied Mathematics
113 rdf:type schema:DefinedTerm
114 sg:grant.7888764 http://pending.schema.org/fundedItem sg:pub.10.1038/srep37142
115 rdf:type schema:MonetaryGrant
116 sg:journal.1045337 schema:issn 2045-2322
117 schema:name Scientific Reports
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.01075117510.01 schema:affiliation grid-institutes:grid.417965.8
121 schema:familyName Chakraborty
122 schema:givenName Sagar
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075117510.01
124 rdf:type schema:Person
125 sg:person.01110326201.31 schema:affiliation grid-institutes:grid.6190.e
126 schema:familyName Witthaut
127 schema:givenName Dirk
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110326201.31
129 rdf:type schema:Person
130 sg:person.0615513231.04 schema:affiliation grid-institutes:grid.5801.c
131 schema:familyName Nagler
132 schema:givenName Jan
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615513231.04
134 rdf:type schema:Person
135 sg:person.0636350457.17 schema:affiliation grid-institutes:grid.6546.1
136 schema:familyName Timme
137 schema:givenName Marc
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636350457.17
139 rdf:type schema:Person
140 sg:person.0707511563.46 schema:affiliation grid-institutes:grid.419514.c
141 schema:familyName Schröder
142 schema:givenName Malte
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707511563.46
144 rdf:type schema:Person
145 sg:pub.10.1038/nature10011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045479836
146 https://doi.org/10.1038/nature10011
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ncomms11061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015650982
149 https://doi.org/10.1038/ncomms11061
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/ncomms2939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041701867
152 https://doi.org/10.1038/ncomms2939
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nphys3469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007285036
155 https://doi.org/10.1038/nphys3469
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/srep04590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047401445
158 https://doi.org/10.1038/srep04590
159 rdf:type schema:CreativeWork
160 sg:pub.10.1140/epjb/e2010-00211-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017254993
161 https://doi.org/10.1140/epjb/e2010-00211-6
162 rdf:type schema:CreativeWork
163 grid-institutes:grid.417965.8 schema:alternateName Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016, India
164 schema:name Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016, India
165 rdf:type schema:Organization
166 grid-institutes:grid.419514.c schema:alternateName Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
167 schema:name Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
168 rdf:type schema:Organization
169 grid-institutes:grid.5801.c schema:alternateName Computational Physics, IfB, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
170 schema:name Computational Physics, IfB, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
171 rdf:type schema:Organization
172 grid-institutes:grid.6190.e schema:alternateName Institute for Theoretical Physics, University of Cologne, 50937 Köln, Germany
173 schema:name Forschungszentrum Jülich, Institute for Energy and Climate Research - Systems Analysis and Technology Evaluation (IEK-STE), 52428 Jülich, Germany
174 Institute for Theoretical Physics, University of Cologne, 50937 Köln, Germany
175 rdf:type schema:Organization
176 grid-institutes:grid.6546.1 schema:alternateName Department of Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
177 schema:name Department of Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
178 Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...