Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Z-H He, B Beaurepaire, J A Nees, G Gallé, S A Scott, J R Sánchez Pérez, M G Lagally, K Krushelnick, A G R Thomas, J Faure

ABSTRACT

Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes. More... »

PAGES

36224

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep36224

DOI

http://dx.doi.org/10.1038/srep36224

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027988641

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27824086


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109-2099 USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Z-H", 
        "id": "sg:person.01045464265.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045464265.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "LOA, ENSTA ParisTech, CNRS, \u00c9cole polytechnique, Universit\u00e9 Paris-Saclay, Palaiseau, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beaurepaire", 
        "givenName": "B", 
        "id": "sg:person.01222760125.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222760125.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109-2099 USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nees", 
        "givenName": "J A", 
        "id": "sg:person.01262227551.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262227551.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "LOA, ENSTA ParisTech, CNRS, \u00c9cole polytechnique, Universit\u00e9 Paris-Saclay, Palaiseau, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gall\u00e9", 
        "givenName": "G", 
        "id": "sg:person.015254045505.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015254045505.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "University of Wisconsin-Madison, Madison, Wisconsin 53706, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scott", 
        "givenName": "S A", 
        "id": "sg:person.01262353554.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262353554.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "University of Wisconsin-Madison, Madison, Wisconsin 53706, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez", 
        "givenName": "J R S\u00e1nchez", 
        "id": "sg:person.016647006505.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647006505.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "University of Wisconsin-Madison, Madison, Wisconsin 53706, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lagally", 
        "givenName": "M G", 
        "id": "sg:person.0712201505.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712201505.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109-2099 USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krushelnick", 
        "givenName": "K", 
        "id": "sg:person.01354756077.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354756077.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lancaster University", 
          "id": "https://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109-2099 USA.", 
            "Department of Physics, Lancaster University, Bailrigg, Lancashire, LA1 4YB, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "A G R", 
        "id": "sg:person.012134343512.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012134343512.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "LOA, ENSTA ParisTech, CNRS, \u00c9cole polytechnique, Universit\u00e9 Paris-Saclay, Palaiseau, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faure", 
        "givenName": "J", 
        "id": "sg:person.01353670364.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353670364.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-4075/48/4/045601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000402556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevaccelbeams.19.021302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006897192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevaccelbeams.19.021302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006897192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/15/5/053016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006962219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009401380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009401380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015541509", 
          "https://doi.org/10.1038/nphoton.2010.239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015541509", 
          "https://doi.org/10.1038/nphoton.2010.239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/40/4/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018419277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.015003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019396524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.015003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019396524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4906786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021864573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.224801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022221852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.224801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022221852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/2/023023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026644157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.264801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029382228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.264801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029382228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031361513", 
          "https://doi.org/10.1038/ncomms9723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031641869", 
          "https://doi.org/10.1038/nphys1872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/74/9/096101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035462394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036175440", 
          "https://doi.org/10.1038/ncomms8156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/47/12/124005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037680668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemphys.2013.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039578246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/37317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043671387", 
          "https://doi.org/10.1038/37317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/37317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043671387", 
          "https://doi.org/10.1038/37317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b916582g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047424970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.physchem.57.032905.104748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050018007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp064649n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056067670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp064649n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056067670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2372697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057853324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3226674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057921149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3361196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057941660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3478005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057958574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3520283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057966900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3602314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057983049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3695389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058002925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4747155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058058162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4792057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058069543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4798518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058073252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.93316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058133455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060528426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060528426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.094301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.094301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.155504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.155504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.215004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.215004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.194802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.194802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.074801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.074801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.251.4993.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062541430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5461.2237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.012048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065200352"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep36224", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4313603", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3792878", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4319520", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator", 
    "pagination": "36224", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "855466f579fe409352e5e589a67a0a287745a019c67010f1c0ab66e777dfe77d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27824086"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep36224"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027988641"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep36224", 
      "https://app.dimensions.ai/details/publication/pub.1027988641"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2016/161031/srep36224/full/srep36224.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep36224'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep36224'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep36224'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep36224'


 

This table displays all metadata directly associated to this object as RDF triples.

284 TRIPLES      21 PREDICATES      73 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep36224 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N305f3c3403474314be9d3130232fa0fe
4 schema:citation sg:pub.10.1038/37317
5 sg:pub.10.1038/ncomms8156
6 sg:pub.10.1038/ncomms9723
7 sg:pub.10.1038/nphoton.2010.239
8 sg:pub.10.1038/nphys1872
9 https://doi.org/10.1016/j.chemphys.2013.06.012
10 https://doi.org/10.1021/jp064649n
11 https://doi.org/10.1039/b916582g
12 https://doi.org/10.1063/1.2372697
13 https://doi.org/10.1063/1.3226674
14 https://doi.org/10.1063/1.3361196
15 https://doi.org/10.1063/1.3478005
16 https://doi.org/10.1063/1.3520283
17 https://doi.org/10.1063/1.3602314
18 https://doi.org/10.1063/1.3695389
19 https://doi.org/10.1063/1.4747155
20 https://doi.org/10.1063/1.4792057
21 https://doi.org/10.1063/1.4798518
22 https://doi.org/10.1063/1.4906786
23 https://doi.org/10.1063/1.93316
24 https://doi.org/10.1088/0022-3727/40/4/r01
25 https://doi.org/10.1088/0034-4885/74/9/096101
26 https://doi.org/10.1088/0953-4075/47/12/124005
27 https://doi.org/10.1088/0953-4075/48/4/045601
28 https://doi.org/10.1088/1367-2630/15/5/053016
29 https://doi.org/10.1088/1367-2630/16/2/023023
30 https://doi.org/10.1103/physrevaccelbeams.19.021302
31 https://doi.org/10.1103/physrevb.23.1909
32 https://doi.org/10.1103/physrevb.79.094301
33 https://doi.org/10.1103/physrevlett.100.155504
34 https://doi.org/10.1103/physrevlett.105.215004
35 https://doi.org/10.1103/physrevlett.105.264801
36 https://doi.org/10.1103/physrevlett.110.015003
37 https://doi.org/10.1103/physrevlett.111.224801
38 https://doi.org/10.1103/physrevlett.115.194802
39 https://doi.org/10.1103/physrevlett.50.454
40 https://doi.org/10.1103/physrevlett.97.074801
41 https://doi.org/10.1103/physrevx.5.031012
42 https://doi.org/10.1103/revmodphys.81.1229
43 https://doi.org/10.1103/revmodphys.85.1
44 https://doi.org/10.1126/science.251.4993.531
45 https://doi.org/10.1126/science.287.5461.2237
46 https://doi.org/10.1146/annurev.physchem.57.032905.104748
47 https://doi.org/10.1364/oe.20.012048
48 schema:datePublished 2016-12
49 schema:datePublishedReg 2016-12-01
50 schema:description Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N51e80c43def64e6090906c14e603cb19
55 Nc2909ecc84a248328060f7856b47d565
56 sg:journal.1045337
57 schema:name Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator
58 schema:pagination 36224
59 schema:productId N2aafc647f7b5416e8d20cf9ab715c41e
60 N3ff74c21a975498cb5c2af39e9a8edc1
61 N508ac768253a4e2aa8d4ceff557ed1aa
62 N513b6494c87a4b2cbcc7a93ee7c33887
63 N6a18c3ca0b4e420dbee59034d06596f2
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027988641
65 https://doi.org/10.1038/srep36224
66 schema:sdDatePublished 2019-04-10T20:53
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Ned6244bfe8244be8972371afb4fd4023
69 schema:url http://www.nature.com/srep/2016/161031/srep36224/full/srep36224.html
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N2aafc647f7b5416e8d20cf9ab715c41e schema:name nlm_unique_id
74 schema:value 101563288
75 rdf:type schema:PropertyValue
76 N305f3c3403474314be9d3130232fa0fe rdf:first sg:person.01045464265.18
77 rdf:rest N9fa7fba00fc84b3f924c226d7e397dd7
78 N3ddb70ee2401484198e328bd09eeda53 rdf:first sg:person.01354756077.46
79 rdf:rest N8222b59409324c8382117abaf1fc01ea
80 N3ff74c21a975498cb5c2af39e9a8edc1 schema:name dimensions_id
81 schema:value pub.1027988641
82 rdf:type schema:PropertyValue
83 N508ac768253a4e2aa8d4ceff557ed1aa schema:name pubmed_id
84 schema:value 27824086
85 rdf:type schema:PropertyValue
86 N513b6494c87a4b2cbcc7a93ee7c33887 schema:name doi
87 schema:value 10.1038/srep36224
88 rdf:type schema:PropertyValue
89 N51e80c43def64e6090906c14e603cb19 schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N5a977bc58edc46f2a5ed8fe94b93074a rdf:first sg:person.016647006505.66
92 rdf:rest N9415448b902b4cef92a368e89fd42093
93 N6a18c3ca0b4e420dbee59034d06596f2 schema:name readcube_id
94 schema:value 855466f579fe409352e5e589a67a0a287745a019c67010f1c0ab66e777dfe77d
95 rdf:type schema:PropertyValue
96 N8222b59409324c8382117abaf1fc01ea rdf:first sg:person.012134343512.64
97 rdf:rest Nb5f65f6228584012be810d46f39c1f2d
98 N92a89c73f0c7487397ee1da4a512b057 rdf:first sg:person.01262227551.98
99 rdf:rest Nb3d65cdc6c644e1f8b3d609770ec3b57
100 N9415448b902b4cef92a368e89fd42093 rdf:first sg:person.0712201505.05
101 rdf:rest N3ddb70ee2401484198e328bd09eeda53
102 N9fa7fba00fc84b3f924c226d7e397dd7 rdf:first sg:person.01222760125.82
103 rdf:rest N92a89c73f0c7487397ee1da4a512b057
104 Nb3d65cdc6c644e1f8b3d609770ec3b57 rdf:first sg:person.015254045505.24
105 rdf:rest Ned79634672254dd1bf263a4ef6d9c0d5
106 Nb5f65f6228584012be810d46f39c1f2d rdf:first sg:person.01353670364.49
107 rdf:rest rdf:nil
108 Nc2909ecc84a248328060f7856b47d565 schema:volumeNumber 6
109 rdf:type schema:PublicationVolume
110 Ned6244bfe8244be8972371afb4fd4023 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Ned79634672254dd1bf263a4ef6d9c0d5 rdf:first sg:person.01262353554.80
113 rdf:rest N5a977bc58edc46f2a5ed8fe94b93074a
114 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
115 schema:name Physical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
118 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
119 rdf:type schema:DefinedTerm
120 sg:grant.3792878 http://pending.schema.org/fundedItem sg:pub.10.1038/srep36224
121 rdf:type schema:MonetaryGrant
122 sg:grant.4313603 http://pending.schema.org/fundedItem sg:pub.10.1038/srep36224
123 rdf:type schema:MonetaryGrant
124 sg:grant.4319520 http://pending.schema.org/fundedItem sg:pub.10.1038/srep36224
125 rdf:type schema:MonetaryGrant
126 sg:journal.1045337 schema:issn 2045-2322
127 schema:name Scientific Reports
128 rdf:type schema:Periodical
129 sg:person.01045464265.18 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
130 schema:familyName He
131 schema:givenName Z-H
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045464265.18
133 rdf:type schema:Person
134 sg:person.012134343512.64 schema:affiliation https://www.grid.ac/institutes/grid.9835.7
135 schema:familyName Thomas
136 schema:givenName A G R
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012134343512.64
138 rdf:type schema:Person
139 sg:person.01222760125.82 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
140 schema:familyName Beaurepaire
141 schema:givenName B
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222760125.82
143 rdf:type schema:Person
144 sg:person.01262227551.98 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
145 schema:familyName Nees
146 schema:givenName J A
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262227551.98
148 rdf:type schema:Person
149 sg:person.01262353554.80 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
150 schema:familyName Scott
151 schema:givenName S A
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262353554.80
153 rdf:type schema:Person
154 sg:person.01353670364.49 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
155 schema:familyName Faure
156 schema:givenName J
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353670364.49
158 rdf:type schema:Person
159 sg:person.01354756077.46 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
160 schema:familyName Krushelnick
161 schema:givenName K
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354756077.46
163 rdf:type schema:Person
164 sg:person.015254045505.24 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
165 schema:familyName Gallé
166 schema:givenName G
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015254045505.24
168 rdf:type schema:Person
169 sg:person.016647006505.66 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
170 schema:familyName Pérez
171 schema:givenName J R Sánchez
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647006505.66
173 rdf:type schema:Person
174 sg:person.0712201505.05 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
175 schema:familyName Lagally
176 schema:givenName M G
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712201505.05
178 rdf:type schema:Person
179 sg:pub.10.1038/37317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043671387
180 https://doi.org/10.1038/37317
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ncomms8156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036175440
183 https://doi.org/10.1038/ncomms8156
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ncomms9723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031361513
186 https://doi.org/10.1038/ncomms9723
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nphoton.2010.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015541509
189 https://doi.org/10.1038/nphoton.2010.239
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nphys1872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031641869
192 https://doi.org/10.1038/nphys1872
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.chemphys.2013.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039578246
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/jp064649n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056067670
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1039/b916582g schema:sameAs https://app.dimensions.ai/details/publication/pub.1047424970
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1063/1.2372697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057853324
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1063/1.3226674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057921149
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1063/1.3361196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057941660
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1063/1.3478005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057958574
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1063/1.3520283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057966900
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1063/1.3602314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057983049
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1063/1.3695389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058002925
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1063/1.4747155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058058162
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1063/1.4792057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058069543
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1063/1.4798518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058073252
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1063/1.4906786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021864573
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1063/1.93316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058133455
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1088/0022-3727/40/4/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018419277
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1088/0034-4885/74/9/096101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035462394
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1088/0953-4075/47/12/124005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037680668
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1088/0953-4075/48/4/045601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000402556
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1088/1367-2630/15/5/053016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006962219
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1088/1367-2630/16/2/023023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026644157
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevaccelbeams.19.021302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006897192
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevb.23.1909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060528426
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevb.79.094301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627589
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevlett.100.155504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753276
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevlett.105.215004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757674
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevlett.105.264801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029382228
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevlett.110.015003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019396524
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/physrevlett.111.224801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022221852
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physrevlett.115.194802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764404
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrevlett.50.454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788754
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1103/physrevlett.97.074801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832705
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevx.5.031012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009401380
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/revmodphys.81.1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839670
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/revmodphys.85.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015710152
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1126/science.251.4993.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062541430
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1126/science.287.5461.2237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568867
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1146/annurev.physchem.57.032905.104748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050018007
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1364/oe.20.012048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065200352
271 rdf:type schema:CreativeWork
272 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
273 schema:name University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
274 rdf:type schema:Organization
275 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
276 schema:name Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109-2099 USA.
277 rdf:type schema:Organization
278 https://www.grid.ac/institutes/grid.462947.a schema:alternateName Laboratoire d'Optique Appliquée
279 schema:name LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, Palaiseau, France.
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.9835.7 schema:alternateName Lancaster University
282 schema:name Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109-2099 USA.
283 Department of Physics, Lancaster University, Bailrigg, Lancashire, LA1 4YB, UK.
284 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...