HASE: Framework for efficient high-dimensional association analyses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

G V Roshchupkin, H H H Adams, M W Vernooij, A Hofman, C M Van Duijn, M A Ikram, W J Niessen

ABSTRACT

High-throughput technology can now provide rich information on a person's biological makeup and environmental surroundings. Important discoveries have been made by relating these data to various health outcomes in fields such as genomics, proteomics, and medical imaging. However, cross-investigations between several high-throughput technologies remain impractical due to demanding computational requirements (hundreds of years of computing resources) and unsuitability for collaborative settings (terabytes of data to share). Here we introduce the HASE framework that overcomes both of these issues. Our approach dramatically reduces computational time from years to only hours and also requires several gigabytes to be exchanged between collaborators. We implemented a novel meta-analytical method that yields identical power as pooled analyses without the need of sharing individual participant data. The efficiency of the framework is illustrated by associating 9 million genetic variants with 1.5 million brain imaging voxels in three cohorts (total N = 4,034) followed by meta-analysis, on a standard computational infrastructure. These experiments indicate that HASE facilitates high-dimensional association studies enabling large multicenter association studies for future discoveries. More... »

PAGES

36076

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep36076

DOI

http://dx.doi.org/10.1038/srep36076

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026202350

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27782180


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands.", 
            "Department of Medical Informatics, Erasmus MC, Rotterdam, Netherlands."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roshchupkin", 
        "givenName": "G V", 
        "id": "sg:person.012423702171.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012423702171.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands.", 
            "Department of Epidemiology, Erasmus MC, Netherlands."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adams", 
        "givenName": "H H H", 
        "id": "sg:person.010127456152.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127456152.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands.", 
            "Department of Epidemiology, Erasmus MC, Netherlands."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vernooij", 
        "givenName": "M W", 
        "id": "sg:person.0630735474.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630735474.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Epidemiology, Erasmus MC, Netherlands."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofman", 
        "givenName": "A", 
        "id": "sg:person.0670056120.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670056120.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Epidemiology, Erasmus MC, Netherlands."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Duijn", 
        "givenName": "C M", 
        "id": "sg:person.011675454737.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011675454737.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands.", 
            "Department of Epidemiology, Erasmus MC, Netherlands.", 
            "Department of Neurology, Erasmus MC, Rotterdam, Netherlands."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ikram", 
        "givenName": "M A", 
        "id": "sg:person.01273302464.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273302464.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands.", 
            "Department of Medical Informatics, Erasmus MC, Rotterdam, Netherlands.", 
            "Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niessen", 
        "givenName": "W J", 
        "id": "sg:person.01051150205.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051150205.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001322535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001779993", 
          "https://doi.org/10.1038/nature14101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001779993", 
          "https://doi.org/10.1038/nature14101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003215865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006357119", 
          "https://doi.org/10.1038/ng.3097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.05.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007014329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.05.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007014329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.05.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007014329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.05.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007014329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015924562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016134453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025133227", 
          "https://doi.org/10.1038/nature08185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025133227", 
          "https://doi.org/10.1038/nature08185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep11044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026869470", 
          "https://doi.org/10.1038/srep11044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031060989", 
          "https://doi.org/10.1038/ng.3453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.3718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031641745", 
          "https://doi.org/10.1038/nn.3718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbt066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036132977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-013-1376-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041530790", 
          "https://doi.org/10.1007/s00439-013-1376-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-013-1376-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041530790", 
          "https://doi.org/10.1007/s00439-013-1376-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-013-1376-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041530790", 
          "https://doi.org/10.1007/s00439-013-1376-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2014.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044265637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047276303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053003561", 
          "https://doi.org/10.1038/nature14177"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "High-throughput technology can now provide rich information on a person's biological makeup and environmental surroundings. Important discoveries have been made by relating these data to various health outcomes in fields such as genomics, proteomics, and medical imaging. However, cross-investigations between several high-throughput technologies remain impractical due to demanding computational requirements (hundreds of years of computing resources) and unsuitability for collaborative settings (terabytes of data to share). Here we introduce the HASE framework that overcomes both of these issues. Our approach dramatically reduces computational time from years to only hours and also requires several gigabytes to be exchanged between collaborators. We implemented a novel meta-analytical method that yields identical power as pooled analyses without the need of sharing individual participant data. The efficiency of the framework is illustrated by associating 9 million genetic variants with 1.5 million brain imaging voxels in three cohorts (total N\u2009=\u20094,034) followed by meta-analysis, on a standard computational infrastructure. These experiments indicate that HASE facilitates high-dimensional association studies enabling large multicenter association studies for future discoveries.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep36076", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4113415", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4112312", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4136838", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5495104", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "HASE: Framework for efficient high-dimensional association analyses", 
    "pagination": "36076", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7cd3232310fb88c96c1445b8319ce41f2b6c6152659241494e966f0cde634801"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27782180"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep36076"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026202350"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep36076", 
      "https://app.dimensions.ai/details/publication/pub.1026202350"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2016/161026/srep36076/full/srep36076.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep36076'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep36076'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep36076'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep36076'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      46 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep36076 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb56032743e1542fe816177b54f401dc3
4 schema:citation sg:pub.10.1007/s00439-013-1376-2
5 sg:pub.10.1038/nature08185
6 sg:pub.10.1038/nature14101
7 sg:pub.10.1038/nature14177
8 sg:pub.10.1038/ng.3097
9 sg:pub.10.1038/ng.3453
10 sg:pub.10.1038/nn.3718
11 sg:pub.10.1038/srep11044
12 https://doi.org/10.1002/hbm.22471
13 https://doi.org/10.1016/j.neuroimage.2010.02.032
14 https://doi.org/10.1016/j.neuroimage.2015.05.043
15 https://doi.org/10.1016/j.tig.2014.02.003
16 https://doi.org/10.1086/519795
17 https://doi.org/10.1093/bib/bbt066
18 https://doi.org/10.1093/bioinformatics/btq340
19 https://doi.org/10.1371/journal.pgen.1002707
20 https://doi.org/10.1371/journal.pgen.1003005
21 schema:datePublished 2016-12
22 schema:datePublishedReg 2016-12-01
23 schema:description High-throughput technology can now provide rich information on a person's biological makeup and environmental surroundings. Important discoveries have been made by relating these data to various health outcomes in fields such as genomics, proteomics, and medical imaging. However, cross-investigations between several high-throughput technologies remain impractical due to demanding computational requirements (hundreds of years of computing resources) and unsuitability for collaborative settings (terabytes of data to share). Here we introduce the HASE framework that overcomes both of these issues. Our approach dramatically reduces computational time from years to only hours and also requires several gigabytes to be exchanged between collaborators. We implemented a novel meta-analytical method that yields identical power as pooled analyses without the need of sharing individual participant data. The efficiency of the framework is illustrated by associating 9 million genetic variants with 1.5 million brain imaging voxels in three cohorts (total N = 4,034) followed by meta-analysis, on a standard computational infrastructure. These experiments indicate that HASE facilitates high-dimensional association studies enabling large multicenter association studies for future discoveries.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf Nc7f1b4ed48ca4fe984442b44f00e9427
28 Nebfa4aeceb9b489fb5a70c1e78a68771
29 sg:journal.1045337
30 schema:name HASE: Framework for efficient high-dimensional association analyses
31 schema:pagination 36076
32 schema:productId N3769ebe0801048be9eb62fb0665fb428
33 N4ac70aa026754ef2b6cd3749a69e74cc
34 N5aa6d78b4a2f49899cbd9eb3caa30ad1
35 N99aa48045f9d4aba996ea1209736014b
36 Nfa6de7d8ef3a4ee9b2b48c0cdc418029
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026202350
38 https://doi.org/10.1038/srep36076
39 schema:sdDatePublished 2019-04-10T17:38
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N9630b3b1149243a195e84156b36a4e9f
42 schema:url http://www.nature.com/srep/2016/161026/srep36076/full/srep36076.html
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N14cd51c8dce8403799708d5bb58d5056 rdf:first sg:person.01273302464.25
47 rdf:rest Nfe4588f39ede4a0cb8cd7a97ae42a938
48 N3769ebe0801048be9eb62fb0665fb428 schema:name doi
49 schema:value 10.1038/srep36076
50 rdf:type schema:PropertyValue
51 N4ac70aa026754ef2b6cd3749a69e74cc schema:name dimensions_id
52 schema:value pub.1026202350
53 rdf:type schema:PropertyValue
54 N5aa6d78b4a2f49899cbd9eb3caa30ad1 schema:name pubmed_id
55 schema:value 27782180
56 rdf:type schema:PropertyValue
57 N5d686e7cc25042d697646e6793e1418c rdf:first sg:person.011675454737.09
58 rdf:rest N14cd51c8dce8403799708d5bb58d5056
59 N76134baed95e432b9fe4dd03cac3ee95 rdf:first sg:person.010127456152.27
60 rdf:rest N99171bbbf0b54685a2328cf905007de0
61 N9630b3b1149243a195e84156b36a4e9f schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N99171bbbf0b54685a2328cf905007de0 rdf:first sg:person.0630735474.31
64 rdf:rest Na421b47b650b43dc8db8d33789897a82
65 N99aa48045f9d4aba996ea1209736014b schema:name nlm_unique_id
66 schema:value 101563288
67 rdf:type schema:PropertyValue
68 Na421b47b650b43dc8db8d33789897a82 rdf:first sg:person.0670056120.12
69 rdf:rest N5d686e7cc25042d697646e6793e1418c
70 Nb56032743e1542fe816177b54f401dc3 rdf:first sg:person.012423702171.40
71 rdf:rest N76134baed95e432b9fe4dd03cac3ee95
72 Nc7f1b4ed48ca4fe984442b44f00e9427 schema:volumeNumber 6
73 rdf:type schema:PublicationVolume
74 Nebfa4aeceb9b489fb5a70c1e78a68771 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 Nfa6de7d8ef3a4ee9b2b48c0cdc418029 schema:name readcube_id
77 schema:value 7cd3232310fb88c96c1445b8319ce41f2b6c6152659241494e966f0cde634801
78 rdf:type schema:PropertyValue
79 Nfe4588f39ede4a0cb8cd7a97ae42a938 rdf:first sg:person.01051150205.72
80 rdf:rest rdf:nil
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:grant.4112312 http://pending.schema.org/fundedItem sg:pub.10.1038/srep36076
88 rdf:type schema:MonetaryGrant
89 sg:grant.4113415 http://pending.schema.org/fundedItem sg:pub.10.1038/srep36076
90 rdf:type schema:MonetaryGrant
91 sg:grant.4136838 http://pending.schema.org/fundedItem sg:pub.10.1038/srep36076
92 rdf:type schema:MonetaryGrant
93 sg:grant.5495104 http://pending.schema.org/fundedItem sg:pub.10.1038/srep36076
94 rdf:type schema:MonetaryGrant
95 sg:journal.1045337 schema:issn 2045-2322
96 schema:name Scientific Reports
97 rdf:type schema:Periodical
98 sg:person.010127456152.27 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
99 schema:familyName Adams
100 schema:givenName H H H
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127456152.27
102 rdf:type schema:Person
103 sg:person.01051150205.72 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
104 schema:familyName Niessen
105 schema:givenName W J
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051150205.72
107 rdf:type schema:Person
108 sg:person.011675454737.09 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
109 schema:familyName Van Duijn
110 schema:givenName C M
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011675454737.09
112 rdf:type schema:Person
113 sg:person.012423702171.40 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
114 schema:familyName Roshchupkin
115 schema:givenName G V
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012423702171.40
117 rdf:type schema:Person
118 sg:person.01273302464.25 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
119 schema:familyName Ikram
120 schema:givenName M A
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273302464.25
122 rdf:type schema:Person
123 sg:person.0630735474.31 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
124 schema:familyName Vernooij
125 schema:givenName M W
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630735474.31
127 rdf:type schema:Person
128 sg:person.0670056120.12 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
129 schema:familyName Hofman
130 schema:givenName A
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670056120.12
132 rdf:type schema:Person
133 sg:pub.10.1007/s00439-013-1376-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041530790
134 https://doi.org/10.1007/s00439-013-1376-2
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature08185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025133227
137 https://doi.org/10.1038/nature08185
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature14101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001779993
140 https://doi.org/10.1038/nature14101
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature14177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003561
143 https://doi.org/10.1038/nature14177
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ng.3097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006357119
146 https://doi.org/10.1038/ng.3097
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ng.3453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031060989
149 https://doi.org/10.1038/ng.3453
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nn.3718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031641745
152 https://doi.org/10.1038/nn.3718
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/srep11044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026869470
155 https://doi.org/10.1038/srep11044
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/hbm.22471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003215865
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.neuroimage.2010.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001322535
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.neuroimage.2015.05.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007014329
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.tig.2014.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044265637
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/bib/bbt066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036132977
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/bioinformatics/btq340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047276303
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1371/journal.pgen.1002707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015924562
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1371/journal.pgen.1003005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016134453
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
176 schema:name Department of Medical Informatics, Erasmus MC, Rotterdam, Netherlands.
177 Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands.
178 Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands.
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.5645.2 schema:alternateName Erasmus University Medical Center
181 schema:name Department of Epidemiology, Erasmus MC, Netherlands.
182 Department of Medical Informatics, Erasmus MC, Rotterdam, Netherlands.
183 Department of Neurology, Erasmus MC, Rotterdam, Netherlands.
184 Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands.
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...