THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Andreas Brenneis, Felix Schade, Simon Drieschner, Florian Heimbach, Helmut Karl, Jose A Garrido, Alexander W Holleitner

ABSTRACT

For future on-chip communication schemes, it is essential to integrate nanoscale materials with an ultrafast optoelectronic functionality into high-frequency circuits. The atomically thin graphene has been widely demonstrated to be suitable for photovoltaic and optoelectronic devices because of its broadband optical absorption and its high electron mobility. Moreover, the ultrafast relaxation of photogenerated charge carriers has been verified in graphene. Here, we show that dual-gated graphene junctions can be functional parts of THz-circuits. As the underlying optoelectronic process, we exploit ultrafast photo-thermoelectric currents. We describe an immediate photo-thermoelectric current of the unbiased device following a femtosecond laser excitation. For a picosecond time-scale after the optical excitation, an additional photo-thermoelectric contribution shows up, which exhibits the fingerprint of a spatially inverted temperature profile. The latter can be understood by the different time-constants and thermal coupling mechanisms of the electron and phonon baths within graphene to the substrate and the metal contacts. The interplay of the processes gives rise to ultrafast electromagnetic transients in high-frequency circuits, and it is equally important for a fundamental understanding of graphene-based ultrafast photodetectors and switches. More... »

PAGES

35654

References to SciGraph publications

  • 2016-07. Terahertz and mid-infrared reflectance of epitaxial graphene in SCIENTIFIC REPORTS
  • 2014-10. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene in NATURE NANOTECHNOLOGY
  • 2009-12. Ultrafast graphene photodetector in NATURE NANOTECHNOLOGY
  • 2015-02. Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene in NATURE NANOTECHNOLOGY
  • 2013-01. Photoconductivity of biased graphene in NATURE PHOTONICS
  • 2015-12. Ultrafast helicity control of surface currents in topological insulators with near-unity fidelity in NATURE COMMUNICATIONS
  • 2012-02. Ultrafast hot-carrier-dominated photocurrent in graphene in NATURE NANOTECHNOLOGY
  • 2015-05. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating in NATURE NANOTECHNOLOGY
  • 2016-09. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers in SCIENTIFIC REPORTS
  • 2013-02. Photocurrent measurements of supercollision cooling in graphene in NATURE PHYSICS
  • 2013-02. Supercollision cooling in undoped graphene in NATURE PHYSICS
  • 2016-08. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation in SCIENTIFIC REPORTS
  • 2009-07-23. Ultrafast Relaxation of Excited Dirac Fermions in Epitaxial Graphene in ULTRAFAST PHENOMENA XVI
  • 2013-04. Photoexcitation cascade and multiple hot-carrier generation in graphene in NATURE PHYSICS
  • 2016-07. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs in SCIENTIFIC REPORTS
  • 2012-01. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/srep35654

    DOI

    http://dx.doi.org/10.1038/srep35654

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026801006

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27762291


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nanosystems Initiative Munich", 
              "id": "https://www.grid.ac/institutes/grid.452665.6", 
              "name": [
                "Walter Schottky Institut and Physics Department, Technical University Munich, Am Coulombwall 4a, 85748 Garching, Germany.", 
                "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brenneis", 
            "givenName": "Andreas", 
            "id": "sg:person.01050211400.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050211400.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanosystems Initiative Munich", 
              "id": "https://www.grid.ac/institutes/grid.452665.6", 
              "name": [
                "Walter Schottky Institut and Physics Department, Technical University Munich, Am Coulombwall 4a, 85748 Garching, Germany.", 
                "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schade", 
            "givenName": "Felix", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanosystems Initiative Munich", 
              "id": "https://www.grid.ac/institutes/grid.452665.6", 
              "name": [
                "Walter Schottky Institut and Physics Department, Technical University Munich, Am Coulombwall 4a, 85748 Garching, Germany.", 
                "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Drieschner", 
            "givenName": "Simon", 
            "id": "sg:person.011143233515.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143233515.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University Munich", 
              "id": "https://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany.", 
                "Lehrstuhl f\u00fcr Physik funktionaler Schichtsysteme, Physics Department, Technical University of Munich, D-85748 Garching, Germany."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heimbach", 
            "givenName": "Florian", 
            "id": "sg:person.01321322663.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321322663.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Institute of Physics, University of Augsburg, 86135 Augsburg, Germany."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karl", 
            "givenName": "Helmut", 
            "id": "sg:person.01232553200.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232553200.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanosystems Initiative Munich", 
              "id": "https://www.grid.ac/institutes/grid.452665.6", 
              "name": [
                "Walter Schottky Institut and Physics Department, Technical University Munich, Am Coulombwall 4a, 85748 Garching, Germany.", 
                "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garrido", 
            "givenName": "Jose A", 
            "id": "sg:person.01035040723.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035040723.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanosystems Initiative Munich", 
              "id": "https://www.grid.ac/institutes/grid.452665.6", 
              "name": [
                "Walter Schottky Institut and Physics Department, Technical University Munich, Am Coulombwall 4a, 85748 Garching, Germany.", 
                "Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holleitner", 
            "givenName": "Alexander W", 
            "id": "sg:person.0711543207.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711543207.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nnano.2015.54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000793648", 
              "https://doi.org/10.1038/nnano.2015.54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.045413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006042195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.045413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006042195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl202318u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006548917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl202318u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006548917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.056602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006772718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.113.056602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006772718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2009.292", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007762915", 
              "https://doi.org/10.1038/nnano.2009.292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2009.292", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007762915", 
              "https://doi.org/10.1038/nnano.2009.292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009696797", 
              "https://doi.org/10.1038/ncomms7617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011396440", 
              "https://doi.org/10.1038/nnano.2014.276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012089877", 
              "https://doi.org/10.1038/nphys2493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012783684", 
              "https://doi.org/10.1038/nphys2564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl903451y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013129771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl903451y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013129771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep20644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015070362", 
              "https://doi.org/10.1038/srep20644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2837539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015111811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015312076", 
              "https://doi.org/10.1038/ncomms1656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep25301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015399874", 
              "https://doi.org/10.1038/srep25301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl502740g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019703781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3291615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019784658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl2019068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019817320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl2019068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019817320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn300989g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020464621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep26024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023791284", 
              "https://doi.org/10.1038/srep26024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026259415", 
              "https://doi.org/10.1038/nphys2494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl8029493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026944825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl8029493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026944825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp407548a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029375645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.206410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031839391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.206410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031839391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2012.314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036819768", 
              "https://doi.org/10.1038/nphoton.2012.314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-95946-5_86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038501955", 
              "https://doi.org/10.1007/978-3-540-95946-5_86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-95946-5_86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038501955", 
              "https://doi.org/10.1007/978-3-540-95946-5_86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.075449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038523872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.075449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038523872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039801234", 
              "https://doi.org/10.1038/nnano.2014.182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ph400147y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041694535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.106602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045840440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.106602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045840440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2011.243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046544818", 
              "https://doi.org/10.1038/nnano.2011.243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep24301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048022857", 
              "https://doi.org/10.1038/srep24301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3077021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049583175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl8033812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050142539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl8033812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050142539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.5b01912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055120797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.5b02766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055120920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl300262j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056219241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl4001037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056219920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl8019399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056221439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl8019399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056221439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3505926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057964364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3511537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057965227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.91947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058132086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2053-1583/3/2/025007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059182859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.181.1336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060441472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.181.1336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060441472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.085415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060627537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.085415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060627537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.157402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060754197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.157402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060754197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jstqe.2013.2272315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061336753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1211384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062465511"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12", 
        "datePublishedReg": "2016-12-01", 
        "description": "For future on-chip communication schemes, it is essential to integrate nanoscale materials with an ultrafast optoelectronic functionality into high-frequency circuits. The atomically thin graphene has been widely demonstrated to be suitable for photovoltaic and optoelectronic devices because of its broadband optical absorption and its high electron mobility. Moreover, the ultrafast relaxation of photogenerated charge carriers has been verified in graphene. Here, we show that dual-gated graphene junctions can be functional parts of THz-circuits. As the underlying optoelectronic process, we exploit ultrafast photo-thermoelectric currents. We describe an immediate photo-thermoelectric current of the unbiased device following a femtosecond laser excitation. For a picosecond time-scale after the optical excitation, an additional photo-thermoelectric contribution shows up, which exhibits the fingerprint of a spatially inverted temperature profile. The latter can be understood by the different time-constants and thermal coupling mechanisms of the electron and phonon baths within graphene to the substrate and the metal contacts. The interplay of the processes gives rise to ultrafast electromagnetic transients in high-frequency circuits, and it is equally important for a fundamental understanding of graphene-based ultrafast photodetectors and switches.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/srep35654", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3799276", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions", 
        "pagination": "35654", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7fad162ef2390be0f56165818129712112c73783e75c4ded259269504a4e5ea1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27762291"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/srep35654"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026801006"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/srep35654", 
          "https://app.dimensions.ai/details/publication/pub.1026801006"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000550.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/srep/2016/161020/srep35654/full/srep35654.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep35654'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep35654'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep35654'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep35654'


     

    This table displays all metadata directly associated to this object as RDF triples.

    276 TRIPLES      21 PREDICATES      76 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/srep35654 schema:about anzsrc-for:10
    2 anzsrc-for:1007
    3 schema:author Naf30e03ade3e4f1285a707d28ec62a17
    4 schema:citation sg:pub.10.1007/978-3-540-95946-5_86
    5 sg:pub.10.1038/ncomms1656
    6 sg:pub.10.1038/ncomms7617
    7 sg:pub.10.1038/nnano.2009.292
    8 sg:pub.10.1038/nnano.2011.243
    9 sg:pub.10.1038/nnano.2014.182
    10 sg:pub.10.1038/nnano.2014.276
    11 sg:pub.10.1038/nnano.2015.54
    12 sg:pub.10.1038/nphoton.2012.314
    13 sg:pub.10.1038/nphys2493
    14 sg:pub.10.1038/nphys2494
    15 sg:pub.10.1038/nphys2564
    16 sg:pub.10.1038/srep20644
    17 sg:pub.10.1038/srep24301
    18 sg:pub.10.1038/srep25301
    19 sg:pub.10.1038/srep26024
    20 https://doi.org/10.1021/acs.nanolett.5b01912
    21 https://doi.org/10.1021/acs.nanolett.5b02766
    22 https://doi.org/10.1021/jp407548a
    23 https://doi.org/10.1021/nl2019068
    24 https://doi.org/10.1021/nl202318u
    25 https://doi.org/10.1021/nl300262j
    26 https://doi.org/10.1021/nl4001037
    27 https://doi.org/10.1021/nl502740g
    28 https://doi.org/10.1021/nl8019399
    29 https://doi.org/10.1021/nl8029493
    30 https://doi.org/10.1021/nl8033812
    31 https://doi.org/10.1021/nl903451y
    32 https://doi.org/10.1021/nn300989g
    33 https://doi.org/10.1021/ph400147y
    34 https://doi.org/10.1063/1.2837539
    35 https://doi.org/10.1063/1.3077021
    36 https://doi.org/10.1063/1.3291615
    37 https://doi.org/10.1063/1.3505926
    38 https://doi.org/10.1063/1.3511537
    39 https://doi.org/10.1063/1.91947
    40 https://doi.org/10.1088/2053-1583/3/2/025007
    41 https://doi.org/10.1103/physrev.181.1336
    42 https://doi.org/10.1103/physrevb.79.085415
    43 https://doi.org/10.1103/physrevb.84.075449
    44 https://doi.org/10.1103/physrevb.86.045413
    45 https://doi.org/10.1103/physrevlett.101.157402
    46 https://doi.org/10.1103/physrevlett.102.206410
    47 https://doi.org/10.1103/physrevlett.109.106602
    48 https://doi.org/10.1103/physrevlett.113.056602
    49 https://doi.org/10.1109/jstqe.2013.2272315
    50 https://doi.org/10.1126/science.1211384
    51 schema:datePublished 2016-12
    52 schema:datePublishedReg 2016-12-01
    53 schema:description For future on-chip communication schemes, it is essential to integrate nanoscale materials with an ultrafast optoelectronic functionality into high-frequency circuits. The atomically thin graphene has been widely demonstrated to be suitable for photovoltaic and optoelectronic devices because of its broadband optical absorption and its high electron mobility. Moreover, the ultrafast relaxation of photogenerated charge carriers has been verified in graphene. Here, we show that dual-gated graphene junctions can be functional parts of THz-circuits. As the underlying optoelectronic process, we exploit ultrafast photo-thermoelectric currents. We describe an immediate photo-thermoelectric current of the unbiased device following a femtosecond laser excitation. For a picosecond time-scale after the optical excitation, an additional photo-thermoelectric contribution shows up, which exhibits the fingerprint of a spatially inverted temperature profile. The latter can be understood by the different time-constants and thermal coupling mechanisms of the electron and phonon baths within graphene to the substrate and the metal contacts. The interplay of the processes gives rise to ultrafast electromagnetic transients in high-frequency circuits, and it is equally important for a fundamental understanding of graphene-based ultrafast photodetectors and switches.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree true
    57 schema:isPartOf N3efb1f01e695482ca5b352a6897b4980
    58 Nc3687bbdcfc94472a3846e37c98c9c1c
    59 sg:journal.1045337
    60 schema:name THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions
    61 schema:pagination 35654
    62 schema:productId N41a397ebfcb84d6da92759d640fbef46
    63 N51881336ed3b4ff9b165e4ca0a71e0f7
    64 N5d12054ee81d4a41b996ce1aaf061c61
    65 Nab6da52084ea4e0d9dc965fb3ef914d8
    66 Ne26df2a3dac84e02b8c2f3b33f549ecc
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026801006
    68 https://doi.org/10.1038/srep35654
    69 schema:sdDatePublished 2019-04-10T22:39
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher Nefb55179b8b04edea845a46cf75025b4
    72 schema:url http://www.nature.com/srep/2016/161020/srep35654/full/srep35654.html
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N16c603f2b638488f87bf32855d3969de rdf:first sg:person.0711543207.84
    77 rdf:rest rdf:nil
    78 N3e26df7094ad4324b8506099b758fe66 rdf:first sg:person.01232553200.78
    79 rdf:rest Ne9900052f73749e1b1b314fdd311cc11
    80 N3efb1f01e695482ca5b352a6897b4980 schema:issueNumber 1
    81 rdf:type schema:PublicationIssue
    82 N41a397ebfcb84d6da92759d640fbef46 schema:name pubmed_id
    83 schema:value 27762291
    84 rdf:type schema:PropertyValue
    85 N5142ef5194294bbeb6b16dcd83d79298 rdf:first sg:person.011143233515.47
    86 rdf:rest N7c86a3b75d924ca598ebb12ce9cc78a4
    87 N51881336ed3b4ff9b165e4ca0a71e0f7 schema:name readcube_id
    88 schema:value 7fad162ef2390be0f56165818129712112c73783e75c4ded259269504a4e5ea1
    89 rdf:type schema:PropertyValue
    90 N5d12054ee81d4a41b996ce1aaf061c61 schema:name dimensions_id
    91 schema:value pub.1026801006
    92 rdf:type schema:PropertyValue
    93 N7c86a3b75d924ca598ebb12ce9cc78a4 rdf:first sg:person.01321322663.17
    94 rdf:rest N3e26df7094ad4324b8506099b758fe66
    95 N7d0d075fde9b400f9296cfe91dfd68f3 rdf:first N7f0a883de74946ce96e5f9245e5be9e6
    96 rdf:rest N5142ef5194294bbeb6b16dcd83d79298
    97 N7f0a883de74946ce96e5f9245e5be9e6 schema:affiliation https://www.grid.ac/institutes/grid.452665.6
    98 schema:familyName Schade
    99 schema:givenName Felix
    100 rdf:type schema:Person
    101 Nab6da52084ea4e0d9dc965fb3ef914d8 schema:name doi
    102 schema:value 10.1038/srep35654
    103 rdf:type schema:PropertyValue
    104 Naf30e03ade3e4f1285a707d28ec62a17 rdf:first sg:person.01050211400.39
    105 rdf:rest N7d0d075fde9b400f9296cfe91dfd68f3
    106 Nc3687bbdcfc94472a3846e37c98c9c1c schema:volumeNumber 6
    107 rdf:type schema:PublicationVolume
    108 Ne26df2a3dac84e02b8c2f3b33f549ecc schema:name nlm_unique_id
    109 schema:value 101563288
    110 rdf:type schema:PropertyValue
    111 Ne9900052f73749e1b1b314fdd311cc11 rdf:first sg:person.01035040723.71
    112 rdf:rest N16c603f2b638488f87bf32855d3969de
    113 Nefb55179b8b04edea845a46cf75025b4 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Technology
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Nanotechnology
    120 rdf:type schema:DefinedTerm
    121 sg:grant.3799276 http://pending.schema.org/fundedItem sg:pub.10.1038/srep35654
    122 rdf:type schema:MonetaryGrant
    123 sg:journal.1045337 schema:issn 2045-2322
    124 schema:name Scientific Reports
    125 rdf:type schema:Periodical
    126 sg:person.01035040723.71 schema:affiliation https://www.grid.ac/institutes/grid.452665.6
    127 schema:familyName Garrido
    128 schema:givenName Jose A
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035040723.71
    130 rdf:type schema:Person
    131 sg:person.01050211400.39 schema:affiliation https://www.grid.ac/institutes/grid.452665.6
    132 schema:familyName Brenneis
    133 schema:givenName Andreas
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050211400.39
    135 rdf:type schema:Person
    136 sg:person.011143233515.47 schema:affiliation https://www.grid.ac/institutes/grid.452665.6
    137 schema:familyName Drieschner
    138 schema:givenName Simon
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143233515.47
    140 rdf:type schema:Person
    141 sg:person.01232553200.78 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    142 schema:familyName Karl
    143 schema:givenName Helmut
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232553200.78
    145 rdf:type schema:Person
    146 sg:person.01321322663.17 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
    147 schema:familyName Heimbach
    148 schema:givenName Florian
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321322663.17
    150 rdf:type schema:Person
    151 sg:person.0711543207.84 schema:affiliation https://www.grid.ac/institutes/grid.452665.6
    152 schema:familyName Holleitner
    153 schema:givenName Alexander W
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711543207.84
    155 rdf:type schema:Person
    156 sg:pub.10.1007/978-3-540-95946-5_86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038501955
    157 https://doi.org/10.1007/978-3-540-95946-5_86
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/ncomms1656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015312076
    160 https://doi.org/10.1038/ncomms1656
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/ncomms7617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009696797
    163 https://doi.org/10.1038/ncomms7617
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nnano.2009.292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007762915
    166 https://doi.org/10.1038/nnano.2009.292
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nnano.2011.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046544818
    169 https://doi.org/10.1038/nnano.2011.243
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nnano.2014.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039801234
    172 https://doi.org/10.1038/nnano.2014.182
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nnano.2014.276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011396440
    175 https://doi.org/10.1038/nnano.2014.276
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nnano.2015.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000793648
    178 https://doi.org/10.1038/nnano.2015.54
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nphoton.2012.314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036819768
    181 https://doi.org/10.1038/nphoton.2012.314
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nphys2493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012089877
    184 https://doi.org/10.1038/nphys2493
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nphys2494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026259415
    187 https://doi.org/10.1038/nphys2494
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nphys2564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012783684
    190 https://doi.org/10.1038/nphys2564
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/srep20644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015070362
    193 https://doi.org/10.1038/srep20644
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/srep24301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048022857
    196 https://doi.org/10.1038/srep24301
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/srep25301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015399874
    199 https://doi.org/10.1038/srep25301
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/srep26024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023791284
    202 https://doi.org/10.1038/srep26024
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1021/acs.nanolett.5b01912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055120797
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1021/acs.nanolett.5b02766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055120920
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1021/jp407548a schema:sameAs https://app.dimensions.ai/details/publication/pub.1029375645
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1021/nl2019068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019817320
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1021/nl202318u schema:sameAs https://app.dimensions.ai/details/publication/pub.1006548917
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1021/nl300262j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219241
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1021/nl4001037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219920
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1021/nl502740g schema:sameAs https://app.dimensions.ai/details/publication/pub.1019703781
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1021/nl8019399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221439
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1021/nl8029493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026944825
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1021/nl8033812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050142539
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1021/nl903451y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013129771
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1021/nn300989g schema:sameAs https://app.dimensions.ai/details/publication/pub.1020464621
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1021/ph400147y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041694535
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1063/1.2837539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015111811
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1063/1.3077021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583175
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1063/1.3291615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019784658
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1063/1.3505926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057964364
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1063/1.3511537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057965227
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1063/1.91947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058132086
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1088/2053-1583/3/2/025007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059182859
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1103/physrev.181.1336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060441472
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1103/physrevb.79.085415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627537
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1103/physrevb.84.075449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038523872
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1103/physrevb.86.045413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006042195
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1103/physrevlett.101.157402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754197
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1103/physrevlett.102.206410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031839391
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1103/physrevlett.109.106602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045840440
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1103/physrevlett.113.056602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006772718
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1109/jstqe.2013.2272315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061336753
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1126/science.1211384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465511
    265 rdf:type schema:CreativeWork
    266 https://www.grid.ac/institutes/grid.452665.6 schema:alternateName Nanosystems Initiative Munich
    267 schema:name Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany.
    268 Walter Schottky Institut and Physics Department, Technical University Munich, Am Coulombwall 4a, 85748 Garching, Germany.
    269 rdf:type schema:Organization
    270 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
    271 schema:name Lehrstuhl für Physik funktionaler Schichtsysteme, Physics Department, Technical University of Munich, D-85748 Garching, Germany.
    272 Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 Munich, Germany.
    273 rdf:type schema:Organization
    274 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
    275 schema:name Institute of Physics, University of Augsburg, 86135 Augsburg, Germany.
    276 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...