Sorting cells by their dynamical properties View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Ewan Henry, Stefan H Holm, Zunmin Zhang, Jason P Beech, Jonas O Tegenfeldt, Dmitry A Fedosov, Gerhard Gompper

ABSTRACT

Recent advances in cell sorting aim at the development of novel methods that are sensitive to various mechanical properties of cells. Microfluidic technologies have a great potential for cell sorting; however, the design of many micro-devices is based on theories developed for rigid spherical particles with size as a separation parameter. Clearly, most bioparticles are non-spherical and deformable and therefore exhibit a much more intricate behavior in fluid flow than rigid spheres. Here, we demonstrate the use of cells' mechanical and dynamical properties as biomarkers for separation by employing a combination of mesoscale hydrodynamic simulations and microfluidic experiments. The dynamic behavior of red blood cells (RBCs) within deterministic lateral displacement (DLD) devices is investigated for different device geometries and viscosity contrasts between the intra-cellular fluid and suspending medium. We find that the viscosity contrast and associated cell dynamics clearly determine the RBC trajectory through a DLD device. Simulation results compare well to experiments and provide new insights into the physical mechanisms which govern the sorting of non-spherical and deformable cells in DLD devices. Finally, we discuss the implications of cell dynamics for sorting schemes based on properties other than cell size, such as mechanics and morphology. More... »

PAGES

34375

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/srep34375

DOI

http://dx.doi.org/10.1038/srep34375

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049893613

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27708337


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Erythrocyte Deformability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Erythrocytes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Flow Cytometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henry", 
        "givenName": "Ewan", 
        "id": "sg:person.01077223151.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077223151.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Division of Solid State Physics, NanoLund, Lund University, PO Box 118, S-221 00 Lund, Sweden."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holm", 
        "givenName": "Stefan H", 
        "id": "sg:person.01050702773.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050702773.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zunmin", 
        "id": "sg:person.01031107751.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031107751.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Division of Solid State Physics, NanoLund, Lund University, PO Box 118, S-221 00 Lund, Sweden."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beech", 
        "givenName": "Jason P", 
        "id": "sg:person.01102257413.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102257413.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Division of Solid State Physics, NanoLund, Lund University, PO Box 118, S-221 00 Lund, Sweden."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tegenfeldt", 
        "givenName": "Jonas O", 
        "id": "sg:person.0707506422.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707506422.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedosov", 
        "givenName": "Dmitry A", 
        "id": "sg:person.01323035461.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323035461.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gompper", 
        "givenName": "Gerhard", 
        "id": "sg:person.01107761766.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107761766.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0006-3495(84)83999-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000890937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2010.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000949904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.188302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003535691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.188302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003535691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(04)74378-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003674217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4758131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007287041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-013-0497-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007394128", 
          "https://doi.org/10.1007/s10237-013-0497-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4897913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008523566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4sm00248b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010783133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013024117", 
          "https://doi.org/10.1038/ncomms2653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jim.2007.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013640061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4937171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014803513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.990110203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018545922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cyto.990110203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018545922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2014.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022084091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2lc21083e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025118247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4lc00578c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026747497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b515371a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030512931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b515371a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030512931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504243102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032305827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504243102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032305827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4sm01097c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039903294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(98)74076-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040445020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2lc40234c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041118784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1094567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042009152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605967103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043232458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0lc00560f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044369837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.108.138826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048445593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1210236109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049123763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac302074b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055003305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.026705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060729736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.026705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060729736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.011901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.011901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.056301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.056301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.026314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060742337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.026314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060742337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.068103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.068103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471722731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471722731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471722731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471722731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471722731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698652"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "Recent advances in cell sorting aim at the development of novel methods that are sensitive to various mechanical properties of cells. Microfluidic technologies have a great potential for cell sorting; however, the design of many micro-devices is based on theories developed for rigid spherical particles with size as a separation parameter. Clearly, most bioparticles are non-spherical and deformable and therefore exhibit a much more intricate behavior in fluid flow than rigid spheres. Here, we demonstrate the use of cells' mechanical and dynamical properties as biomarkers for separation by employing a combination of mesoscale hydrodynamic simulations and microfluidic experiments. The dynamic behavior of red blood cells (RBCs) within deterministic lateral displacement (DLD) devices is investigated for different device geometries and viscosity contrasts between the intra-cellular fluid and suspending medium. We find that the viscosity contrast and associated cell dynamics clearly determine the RBC trajectory through a DLD device. Simulation results compare well to experiments and provide new insights into the physical mechanisms which govern the sorting of non-spherical and deformable cells in DLD devices. Finally, we discuss the implications of cell dynamics for sorting schemes based on properties other than cell size, such as mechanics and morphology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/srep34375", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Sorting cells by their dynamical properties", 
    "pagination": "34375", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "edad2c6b236eedc6d24a306f11ee7eaa0435087123918c1ffa4cc53a47351246"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27708337"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/srep34375"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049893613"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/srep34375", 
      "https://app.dimensions.ai/details/publication/pub.1049893613"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000595.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/srep/2016/161006/srep34375/full/srep34375.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/srep34375'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/srep34375'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/srep34375'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/srep34375'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      68 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/srep34375 schema:about N74095f9589de409186ad0aea3b7b0559
2 N7fe5275f31144cd3a381074ba15325ff
3 N97931305d80f4032b352a4c00bfa2089
4 Nbc5fc982b7ad48708cad904d793fd40a
5 Nee41da1f42644cd69186b097374134e9
6 Nf93486f683b54272afc02414a350a109
7 anzsrc-for:09
8 anzsrc-for:0915
9 schema:author N65eb7d3447af4af7b7f705cf2c2b1694
10 schema:citation sg:pub.10.1007/s10237-013-0497-9
11 sg:pub.10.1038/ncomms2653
12 https://doi.org/10.1002/0471722731
13 https://doi.org/10.1002/cyto.990110203
14 https://doi.org/10.1016/j.bpj.2010.02.002
15 https://doi.org/10.1016/j.jcp.2014.10.017
16 https://doi.org/10.1016/j.jim.2007.10.004
17 https://doi.org/10.1016/s0006-3495(04)74378-7
18 https://doi.org/10.1016/s0006-3495(84)83999-5
19 https://doi.org/10.1016/s0006-3495(98)74076-7
20 https://doi.org/10.1021/ac302074b
21 https://doi.org/10.1039/b515371a
22 https://doi.org/10.1039/c0lc00560f
23 https://doi.org/10.1039/c2lc21083e
24 https://doi.org/10.1039/c2lc40234c
25 https://doi.org/10.1039/c4lc00578c
26 https://doi.org/10.1039/c4sm00248b
27 https://doi.org/10.1039/c4sm01097c
28 https://doi.org/10.1063/1.4758131
29 https://doi.org/10.1063/1.4897913
30 https://doi.org/10.1063/1.4937171
31 https://doi.org/10.1073/pnas.0504243102
32 https://doi.org/10.1073/pnas.0605967103
33 https://doi.org/10.1073/pnas.1210236109
34 https://doi.org/10.1103/physreve.67.026705
35 https://doi.org/10.1103/physreve.80.011901
36 https://doi.org/10.1103/physreve.83.056301
37 https://doi.org/10.1103/physreve.84.026314
38 https://doi.org/10.1103/physrevlett.83.880
39 https://doi.org/10.1103/physrevlett.88.068103
40 https://doi.org/10.1103/physrevlett.98.188302
41 https://doi.org/10.1126/science.1094567
42 https://doi.org/10.1529/biophysj.108.138826
43 schema:datePublished 2016-12
44 schema:datePublishedReg 2016-12-01
45 schema:description Recent advances in cell sorting aim at the development of novel methods that are sensitive to various mechanical properties of cells. Microfluidic technologies have a great potential for cell sorting; however, the design of many micro-devices is based on theories developed for rigid spherical particles with size as a separation parameter. Clearly, most bioparticles are non-spherical and deformable and therefore exhibit a much more intricate behavior in fluid flow than rigid spheres. Here, we demonstrate the use of cells' mechanical and dynamical properties as biomarkers for separation by employing a combination of mesoscale hydrodynamic simulations and microfluidic experiments. The dynamic behavior of red blood cells (RBCs) within deterministic lateral displacement (DLD) devices is investigated for different device geometries and viscosity contrasts between the intra-cellular fluid and suspending medium. We find that the viscosity contrast and associated cell dynamics clearly determine the RBC trajectory through a DLD device. Simulation results compare well to experiments and provide new insights into the physical mechanisms which govern the sorting of non-spherical and deformable cells in DLD devices. Finally, we discuss the implications of cell dynamics for sorting schemes based on properties other than cell size, such as mechanics and morphology.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N60312db02cef4fe7b1dc70c0d8f271c9
50 Nb7b081ca8ad641889e31bfef35a6b35e
51 sg:journal.1045337
52 schema:name Sorting cells by their dynamical properties
53 schema:pagination 34375
54 schema:productId N343427b2f12141dabe804a7d42eeeeda
55 Na0b75a328af14fe7878cd53046045070
56 Nb00ab58b7fa94b3ebcea76f254d0c76a
57 Ncdaec23fc54d487e95d120d1b029f2a6
58 Nf7ce5fc2d92a4fef96d62c7277ed717f
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049893613
60 https://doi.org/10.1038/srep34375
61 schema:sdDatePublished 2019-04-10T23:38
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N89fd37e332644758bb5c598f6fb09388
64 schema:url http://www.nature.com/srep/2016/161006/srep34375/full/srep34375.html
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N279d4c737359479494ef83ba4d55e337 rdf:first sg:person.01050702773.05
69 rdf:rest Ne70a9b4926274a1d86e025e87bbdd100
70 N321b86e741c64fc4994ba7b8a9202816 rdf:first sg:person.01107761766.54
71 rdf:rest rdf:nil
72 N343427b2f12141dabe804a7d42eeeeda schema:name pubmed_id
73 schema:value 27708337
74 rdf:type schema:PropertyValue
75 N60312db02cef4fe7b1dc70c0d8f271c9 schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N65eb7d3447af4af7b7f705cf2c2b1694 rdf:first sg:person.01077223151.43
78 rdf:rest N279d4c737359479494ef83ba4d55e337
79 N74095f9589de409186ad0aea3b7b0559 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Flow Cytometry
81 rdf:type schema:DefinedTerm
82 N7fe5275f31144cd3a381074ba15325ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Male
84 rdf:type schema:DefinedTerm
85 N89fd37e332644758bb5c598f6fb09388 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N95d54c4e7b8343d788da33f04085b776 rdf:first sg:person.01102257413.13
88 rdf:rest Ncb54fcabd5b343c1b3e1778b004e72cf
89 N97931305d80f4032b352a4c00bfa2089 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Erythrocyte Deformability
91 rdf:type schema:DefinedTerm
92 Na0b75a328af14fe7878cd53046045070 schema:name dimensions_id
93 schema:value pub.1049893613
94 rdf:type schema:PropertyValue
95 Nb00ab58b7fa94b3ebcea76f254d0c76a schema:name nlm_unique_id
96 schema:value 101563288
97 rdf:type schema:PropertyValue
98 Nb7b081ca8ad641889e31bfef35a6b35e schema:volumeNumber 6
99 rdf:type schema:PublicationVolume
100 Nbc5fc982b7ad48708cad904d793fd40a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Erythrocytes
102 rdf:type schema:DefinedTerm
103 Ncb54fcabd5b343c1b3e1778b004e72cf rdf:first sg:person.0707506422.53
104 rdf:rest Nf6863a9ea1a84003839cc3dd1fd6c85b
105 Ncdaec23fc54d487e95d120d1b029f2a6 schema:name doi
106 schema:value 10.1038/srep34375
107 rdf:type schema:PropertyValue
108 Ne70a9b4926274a1d86e025e87bbdd100 rdf:first sg:person.01031107751.45
109 rdf:rest N95d54c4e7b8343d788da33f04085b776
110 Nee41da1f42644cd69186b097374134e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Female
112 rdf:type schema:DefinedTerm
113 Nf6863a9ea1a84003839cc3dd1fd6c85b rdf:first sg:person.01323035461.11
114 rdf:rest N321b86e741c64fc4994ba7b8a9202816
115 Nf7ce5fc2d92a4fef96d62c7277ed717f schema:name readcube_id
116 schema:value edad2c6b236eedc6d24a306f11ee7eaa0435087123918c1ffa4cc53a47351246
117 rdf:type schema:PropertyValue
118 Nf93486f683b54272afc02414a350a109 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Humans
120 rdf:type schema:DefinedTerm
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
125 schema:name Interdisciplinary Engineering
126 rdf:type schema:DefinedTerm
127 sg:journal.1045337 schema:issn 2045-2322
128 schema:name Scientific Reports
129 rdf:type schema:Periodical
130 sg:person.01031107751.45 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
131 schema:familyName Zhang
132 schema:givenName Zunmin
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031107751.45
134 rdf:type schema:Person
135 sg:person.01050702773.05 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
136 schema:familyName Holm
137 schema:givenName Stefan H
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050702773.05
139 rdf:type schema:Person
140 sg:person.01077223151.43 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
141 schema:familyName Henry
142 schema:givenName Ewan
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077223151.43
144 rdf:type schema:Person
145 sg:person.01102257413.13 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
146 schema:familyName Beech
147 schema:givenName Jason P
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102257413.13
149 rdf:type schema:Person
150 sg:person.01107761766.54 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
151 schema:familyName Gompper
152 schema:givenName Gerhard
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107761766.54
154 rdf:type schema:Person
155 sg:person.01323035461.11 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
156 schema:familyName Fedosov
157 schema:givenName Dmitry A
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323035461.11
159 rdf:type schema:Person
160 sg:person.0707506422.53 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
161 schema:familyName Tegenfeldt
162 schema:givenName Jonas O
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707506422.53
164 rdf:type schema:Person
165 sg:pub.10.1007/s10237-013-0497-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007394128
166 https://doi.org/10.1007/s10237-013-0497-9
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ncomms2653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013024117
169 https://doi.org/10.1038/ncomms2653
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/0471722731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109698652
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/cyto.990110203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018545922
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.bpj.2010.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000949904
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.jcp.2014.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022084091
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jim.2007.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013640061
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0006-3495(04)74378-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003674217
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0006-3495(84)83999-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000890937
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0006-3495(98)74076-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040445020
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/ac302074b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055003305
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1039/b515371a schema:sameAs https://app.dimensions.ai/details/publication/pub.1030512931
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1039/c0lc00560f schema:sameAs https://app.dimensions.ai/details/publication/pub.1044369837
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1039/c2lc21083e schema:sameAs https://app.dimensions.ai/details/publication/pub.1025118247
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1039/c2lc40234c schema:sameAs https://app.dimensions.ai/details/publication/pub.1041118784
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1039/c4lc00578c schema:sameAs https://app.dimensions.ai/details/publication/pub.1026747497
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1039/c4sm00248b schema:sameAs https://app.dimensions.ai/details/publication/pub.1010783133
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1039/c4sm01097c schema:sameAs https://app.dimensions.ai/details/publication/pub.1039903294
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1063/1.4758131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007287041
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1063/1.4897913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008523566
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1063/1.4937171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014803513
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1073/pnas.0504243102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032305827
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.0605967103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043232458
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1073/pnas.1210236109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049123763
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physreve.67.026705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060729736
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physreve.80.011901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739214
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physreve.83.056301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060741894
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physreve.84.026314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060742337
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.83.880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820628
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.88.068103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824439
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.98.188302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003535691
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1126/science.1094567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042009152
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1529/biophysj.108.138826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048445593
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.4514.4 schema:alternateName Lund University
234 schema:name Division of Solid State Physics, NanoLund, Lund University, PO Box 118, S-221 00 Lund, Sweden.
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.8385.6 schema:alternateName Forschungszentrum Jülich
237 schema:name Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...